Canadian Journal of Fisheries and Aquatic Sciences Journal canadien des sciences halieutiques et aquatiques

High temporal resolution sampling reveals reef fish settlement is highly clustered

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2016-0318.R1
Manuscript Type:	Article
Complete List of Authors:	Piercy, Julius; Department for Environment Food and Rural Affairs, ; University of Essex, School of Biological Sciences Smith, David; University of Essex, School of Biological Sciences Simpson, Stephen; University of Exeter School of Biosciences Jompa, Jamaluddin; Universitas Hasanuddin Fakultas Ilmu Kelautan dan Perikanan Codling, Edward; University of Essex, Department of Mathematical Sciences
Is the invited manuscript for	31-Mar-2017 consideration in a Special Issue? :
Keyword:	CORAL REEFS < Environment/Habitat, LARVAL SUPPLY, SADIE ANALYSIS, FISH LARVAE, INDO-PACIFIC
Kish Conference	

SCHOLARONE ${ }^{m}$
Manuscripts

High temporal resolution sampling reveals reef fish settlement is highly clustered

Julius J.B. Piercy ${ }^{1}$, School of Biological Sciences, University of Essex, Colchester, UK. David J. Smith, School of Biological Sciences, University of Essex, Colchester, UK. Jamaluddin Jompa, Faculty of Marine Science and Fisheries, Hasanuddin University, Indonesia.

Stephen D. Simpson, Biosciences, University of Exeter, Exeter, UK.
Edward A. Codling, Department of Mathematical Sciences, University of Essex, Colchester, UK.

Corresponding Author: Julius J. B. Piercy, Department for the Environment Food and Rural Affairs, Tel: +447972815151, email: juliuspiercy@gmail.com

[^0]
Abstract

Coral reef fish larvae settle on reefs predominantly at night around the new-moon phase, after an early developmental period spent in the pelagic environment. Most sampling is conducted across whole nights, and any studies that have examined the frequency of arrival within nights have typically been limited to coarse sampling time scales of $1-5$ hours. Here, we present results for arrival numbers of fish caught between dusk and midnight from light traps sampled every 15 min at an Indonesian coral reef, providing the finest temporal resolution for this type of study to date. A Spatial Analysis by Distance IndicEs (SADIE) analysis, adapted to temporal data, revealed clustering of reef arrival times for many species, with an increase in catches immediately after dusk dropping off towards midnight. Importantly, the timing of clusters differed among species indicating that different factors determine the timing of arrival among taxa. Our results support the hypothesis that larval behaviour influences the timing of arrival at a coral reef for different fish species.

Keywords: Coral reefs; fish larvae; larval behaviour; larval settlement; SADIE analysis; IndoPacific.

Introduction

Most coral reef fish spend their early life stage as larvae in the open ocean before returning to reefs to settle (Montgomery et al. 2001; Kingsford et al. 2002; Leis and McCormick 2002). Settlement stage larvae move onto the reef predominantly at night (Robertson et al. 1988; Stobutzki and Bellwood 1998), with a few species potentially also settling to the reef during the daytime (e.g. Dufour and Galzin 1993; Kingsford 2001). Settlement is higher around the new and third quarter moon, when moonlight is weak (Milicich 1988; Meekan et al. 1993; Milicich and Doherty 1994; Sponaugle and Cowen 1997; Leis and Carson-Ewart 1999; D’Alessandro et al. 2007;). Nocturnal settlement has been suggested as a life strategy for avoidance of predators feeding on fish larvae at the reef (Hamner et al. 1988), which could otherwise have a significant impact on the already high mortality rate of settlement stage fishes (Almany and Webster 2006; Dytham and Simpson 2007). The high risk of mortality typical of this life stage of demersal reef fishes is also thought to drive other behaviours in larval fish including auditory and olfactory orientation (Atema et al. 2002; Simpson et al. 2004, 2005) and schooling (Pitcher 1986; Leis 2006; Codling et al. 2007; Simpson et al. 2013; Irisson et al. 2015).

Because of the small size of larval fish and their tendency to settle during low-light levels, it is challenging to directly observe larval behaviour in situ, which often has to be inferred from controlled environments (e.g. olfactory preference Dixson et al. 2008; swimming speed Fisher and Bellwood 2003) or in situ observations made during the daytime (Dixson et al. 2014; Simpson et al. 2005; Leis et al. 2015). From nocturnal sampling methods that are highly restricted in space and time it should be possible to make informed speculations on the behaviours that drive settlement patterns. However, only a few studies have examined the arrival patterns of fish over single night periods (Dufour et al. 1996; McIlwain 1997; Wilson 2003), with the highest temporal resolution being used typically in the range of one recording every $1-2$ hours. Whilst this can provide us with useful information on when the main settlement peaks occur during the night, it is not sufficient temporal resolution to capture arrival of individual cohorts of fish. In the present study we assessed arrival of fish larvae to Indonesian reefs using light traps sampled every 15 min : a finer temporal resolution than any previous sampling method used in this context. The light trap sampling technique is stage selective, capturing
phototactic larval species at a competent settlement stage in high numbers. It does have species sampling biases dependent on the degree of phototactic response and the swimming abilities of the individual larvae (Choat et al. 1993). Overall, however, this technique lends itself well to the study of larval settlement, providing large catches and ease of replication (Milichich 1988; Choat et al. 1993; Wilson 2001, 2003). The focus of this study was not to examine the arrival rate of settlement stage fish for this region (which would also be of interest), as it does not cover lunar, seasonal, or yearly temporal variation, but to explore at high temporal resolution the arrival of fish within single nights.

We hypothesised that: a) settlement stage fish would not arrive at a constant rate in the light traps but would display a high degree of clustering in the catches due to behaviour influencing settlement times; and b) that the arrival rate of different species would follow different arrival patterns if hydrodynamic forces were not the main drivers of clustering patterns.

Materials and Methods

Sites

Sampling was carried out at two sites offshore from the coral reefs of Hoga Island, Southeast Sulawesi, Indonesia (Fig.1), selected based on their different water flow regimes. Buoy 1 is a site located on the reef in the channel between Hoga Island and Kaledupa Island through which a large body mass of water moves daily with the tides. Buoy 5 is located off the western reef of the island and is relatively sheltered although the large changes in tidal range $(\sim 2 \mathrm{~m})$ can result in relatively strong water currents during tide flows towards and away from the shore. There were differences in the acoustic composition of the reef sound spectra and some of the coral composition of the reef (Piercy 2015), but no other known significant differences between them.

Legend reef \square islands $0 \quad 1 \mathrm{Km}$

Figure 1. Sites of light trap sampling off Hoga Island, Indonesia ($5^{\circ} 28^{\prime} 20^{\prime \prime} \mathrm{S} ; 123^{\circ} 45^{\prime} 25^{\prime \prime} \mathrm{E}$). Buoy 1 is located in the channel between Hoga Island and Kaledupa (bottom left corner of this map) where the water current is strongest. Buoy 5 is located in a central position along the Hoga Island western reef and is dominated by inshore and offshore currents as the reef flat (45° grey bars) fills and drains.

Sampling

Sampling was carried out between the third quarter moon, 24 July 2011, and three days after the new moon, 3 August 2011 (new moon was 31 July 2011) between dusk and midnight (18:00-00:00). The focus of this study was on collecting high temporal resolution data rather than lunar or seasonal changes that have been previously extensively examined (e.g., Robertson et al. 1988; Stobutzki and Bellwood 1998; Dufour and Galzin 1993; Kingsford 2001). This "snapshot" approach is representative of a typical new moon recruitment period but may differ in terms of abundance and species composition compared to other times of the year. Throughout the night time period, light levels remained low as the moon had not yet risen with the exception of the last two sampling dates (1
and 3 August) when the moon did not set until 19:30 and 21:00 respectively. However, considering the proximity of these dates to the new moon phase the maximum fraction of the moon illuminated was 17.8% (3 August) with the moon at a maximum altitude of 40° (18:15 2011-08-03) estimated using the MoonAngle function in R (package oce, version 0.9-20), with half or more of the sampling time being undertaken in the absence of any moonlight. Buoy 1 was sampled on nights of the 24 July 2011, and 1 and 3 August 2011, while B5 was sampled on 26, 28 and 30 July 2011.

Sampling was conducted using two Stobutzki and Bellwood (1997) light traps, suspended 1 m below the water surface and fishing alternatively every 15 min throughout the sampling periods. The traps were fitted with a 40 W 12 V fluorescent tube light connected to a 12 V 12 Ah lead acid battery charged to $>13 \mathrm{~V}$. A boat was moored to a buoy to which the light trap was attached during deployment at 1.5 m below the sea surface. The boat was attached to the mooring using 30 m of rope to maintain it at a distance from the light trap and mooring and to minimise disturbance to recruiting fish. Every 15 min the boat was hauled closer to the first light trap, and the second light trap was deployed immediately prior to the first one being extracted from the water to maintain a constant light source in the water column. The contents of the first light trap were emptied via a funnel into a $10 \times 10 \times 10 \mathrm{~cm}$ container with mesh netting openings on the sides and sealed with a mesh netting cap. The operation was carried out within a 20 L bucket containing fresh seawater 10 cm deep to maintain the fish alive and re-capture any escaped fish during the emptying operation. The container was then placed in a fish mesh holder over the side of the boat. Once all 24 samples over the night period had been collected, the mesh containers were placed inside a 100 L polystyrene container filled with fresh seawater, brought back to the shore, and kept aerated using two airstones. The next day, fish from each container were sedated using a mixture of clove oil, 90% ethanol, and sea water in a ratio of 1:3:6 respectively (see ethical note in Simpson et al. 2008). The fish from each container were spread out on a gridded tray with 1 cm of water and photographed lying on their side using a Samsung S860 8.1 MP digital camera (Samsung Electronics Co., Ltd., Suwon, South Korea) and allowed to recover in a 50 L aerated plastic tank containing fresh seawater before being released back onto the reef at dusk. Fish were identified from the photos to family level using the guide by Leis and Carson-Ewart
(2000), and to genera and species where feasible. Fish that were difficult to identify were preserved in 70% ethanol after being anaesthetised and photographed using a Veho VMS-1 USB microscope with x200 maximum magnification (Veho Electronics, Hampshire, UK). All work was carried out under permits held by D. Smith and issued by the Indonesian Minister for Research and Development.

Clustering analysis

To test for non-randomness and provide indices for the degree of clustering on the temporal distribution of fish counts, the Spatial Analysis by Distance IndicEs (SADIE) methodology (Perry et al. 1999) was applied using the SADIEShell program (Open Source under GNU General Public License, V3). This analysis is usually used to test for spatial clustering of species in a twodimensional grid, but can also be applied to one-dimensional data sets such as quadrats positioned in line along a transect (Perry et al. 2002). Since the calculation of the indices is based on a "spatial" matrix of count data, to transpose this problem to a one-dimensional (1-D) context an artificial extra dimension was included where units on the x axis were represented by the times of sampling and their position on the y axis was assumed to be a constant (i.e. $\mathrm{y}=1$; Perry, pers. comm.). Hence, for $\mathrm{I}=$ $1, \ldots, n$ cells were of the form $\left(\mathrm{x}_{\mathrm{i}}, 1\right)$, each containing an observed sample count. This method calculates three indices for the counts of data before testing them against random permutations of the counts to provide the probability p of the measures of aggregation against the randomised ones (Perry 1998; Perry et al. 1999).The first measure is the index of aggregation (Perry 1998), which quantifies the degree of effort required for each cell to reach an even distribution across all cells. The index of aggregation, $I a$, is defined as:

$$
\begin{equation*}
I a=D / E a \tag{1}
\end{equation*}
$$

where D is the distance to regularity, defined as the minimum value of the total distance that the $i t h$ individual sample unit at position $\left(x_{i}, 1\right)$ would have to move, from one unit to the next, so that all units contained an identical count. $E a$ is the arithmetic mean distance to regularity for the randomised samples.

The second index is the distance to crowding index (Perry 1998), a measure of the minimum effort required for the counts of each cell to move into a single cell. The distance to crowding index, J_{a}, is defined as

$$
\begin{equation*}
J_{a}=F_{a} / C \tag{2}
\end{equation*}
$$

where C is the distance to crowding, defined as the minimum value of the total distance that the ith individual sample unit at position $\left(x_{\mathrm{i}}, l\right)$ must move so that all are congregated in one unit. F_{a} is the arithmetic mean distance to crowding for the randomised samples. This index increases in value as the distance to crowding C decreases, (i.e. a high index value indicates a more clustered group, with a lower distance needed for all data to move to the same sampling point). The index is more powerful at detecting a cluster than the index of aggregation I_{a} but cannot be interpreted correctly if more than one cluster is present.

The final measure is the degree of clustering. Similar to the distance to regularity, it calculates the effort required for each cell to reach an even distribution among the cells. However, in this case it computes the degree to which each data point influences the overall clustering, by calculating the strength of inflow and outflow from one cell to another in order to reach an even count between cells. For donor unit i, at position $\left(x_{i}, l\right)$, the outflow to the j of n_{i} receiver units, $j=1, \ldots, n_{\mathrm{i}}$, at position $\left(x_{\mathrm{j}}\right.$ $, 1)$, is denoted as v_{ij}. The distance of this flow d_{ij} is

$$
\begin{equation*}
d_{\mathrm{ij}}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}=\left|x_{i}-x_{j}\right| \tag{3}
\end{equation*}
$$

The average distance of outflow from unit i, weighted by the magnitude of each individual flow, is denoted as Y_{i}, where $\mathrm{Y}_{\mathrm{i}}=\Sigma_{\mathrm{j}} d_{\mathrm{ij}} v_{\mathrm{ij}} / \Sigma_{\mathrm{j}} v_{\mathrm{ij}}$. The same calculation is carried out for inflows.

The distances for inflows and outflows need to be standardised in order to obtain the dimensionless clustering indices. For outflows, a standardised and dimensionless index of clustering, v_{i}, is then given by:

$$
\begin{equation*}
v_{i}=Y_{i o} Y /{ }_{i} Y_{c} Y \tag{4}
\end{equation*}
$$

where Y_{i} is the distance of the flow; ${ }_{i} \mathrm{Y}$ is the expected value of the average absolute flow distance for the i unit, assuming a random arrangement of the observed counts among the observed sample units, where the outflows are computed for each count that is randomly assigned to the i Unit. Similarly, instead of following the unit i, through the counts randomised to it, we can follow the count c through its randomisations to different units, where ${ }_{c} \mathrm{Y}$ is the expected value of the average flow distance for the observed count $c ;{ }_{0} \mathrm{Y}$ is the expected value of the overall average absolute distance of flow for all points and counts in the randomisations. By convention, inflows are given negative scores and outflows positive scores and the average of their absolute values is used as the clustering index. Only taxa for which at least an average of one individual per sampling time was collected on any one day (i.e. >24 individuals) were included in the analysis.

Association analysis

Temporal association between the arrival rates of different fish taxa was measured using the SADIE association index. This method first calculates the similarity between the clustering indices of the two populations at each time point then averages those similarities to provide an overall measure of association: the correlation coefficient.

The measure of local spatial association for unit i is given by:

$$
\begin{equation*}
\chi_{i}=\frac{n\left(z_{i 1}-q_{1}\right)\left(z_{i 2}-q_{2}\right)}{\sqrt{\sum_{k}\left(z_{i 1}-q_{1}\right)^{2} \sum_{k}\left(z_{i 2}-q_{2}\right)^{2}}} \tag{5}
\end{equation*}
$$

where $z_{\mathrm{k} 1}$ denotes the clustering indices of the first set of data, with mean q_{1}, and $z_{\mathrm{k} 2}$ denotes the clustering indices for the second set of data, with mean q_{2}. The overall spatial association is the mean of these local values:

$$
\begin{equation*}
X=\Sigma_{i} \chi_{i} / n \tag{6}
\end{equation*}
$$

where X is the correlation coefficient between the clustering indices of each set. The correlation is not performed directly on the counts because large count values would contribute disproportionately to the correlation coefficient. The significance of the association or disassociation is calculated by permutation of the counts. Since the randomisation process produces a histogram with the probability
for both association and disassociation, the α value to accept or reject the null hypothesis is divided between the two ends of the distribution. Thus $\alpha=0.05$ is split between the two extremities so that the null hypothesis is rejected either for $\mathrm{p}>0.975$ (significant disassociation) or $\mathrm{p}<0.025$ (significant association).

Autocorrelation is a property present in all clustering scenarios and could increase the chance of finding non-existent associations and dis-associations because of the lack of independence of the samples from one another. To minimise this effect and as recommended in Perry et al. (2002), a Dutilleul adjustment was applied to account for the degree of autocorrelation and reduce the effective sample size (Dutilleul 1993). To do this, where necessary, the sets were detrended, and the degrees of freedom corrected for correlation, $M-2$, where M is the effective sample size. The critical values are inflated by a scale factor of $\sqrt{\frac{M-3}{n-3}}$ and the significance of the randomisation test adjusted accordingly. An extreme example of this would be if all samples are so strongly autocorrelated that we only need one sample in order to estimate the size of all the remaining samples, effectively reducing the sample size to one.

Results

During the 144 light trap deployments and collections a total of 2,187 individual fish were caught, representing 28 families, of which some Pomacentridae, Apogonidae, and Sygnathidae could be identified to genus level and even separated into species. The species themselves could rarely be identified due to lack of guides on species level identification for fish at the larval stage for this region of high biodiversity; therefore some species may have been grouped under the same taxon.

No fish were caught during the first sampling period on any night (18:00-18:15) and only one individual fish from the genus Spratelloides was caught on the second sampling period (18:15-18:30) over the six sampling days. More fish were caught at $\mathrm{B} 1(1,656)$ compared to $\mathrm{B} 5(531$ individuals; Chi-square test, $\chi^{2}=37.8, \mathrm{p}<0.001$, d.f. $=2$).

Clustering

All taxa that met the inclusion criteria on at least one day (>24 individuals caught on that sampling night), except Gobiidae and Synodontidae, displayed significant temporal clusters for at least one of the measures for clustering (degree of clustering, index of aggregation and distance to crowding; Table 1 and Figs. 2-5). The significance level of the degree of clustering and the index of aggregation was in agreement for all taxa (i.e. they were either both significant or both non-significant). However, the significance level of the distance to crowding index occasionally differed from the other two indices. A significant clustering effect was observed in Corythoichthys sp. 1 (family Sygnathidae) on 24 July 2011, Abudefduf sp. 1 (family Pomacentridae) on 1 August 2011, and in Apogon sp. 1 (family Apogonidae), Apogon sp.3, Chromis sp. (family Pomacentridae) on 3 August 2011 according to the distance to crowding but not the degree of clustering or the index of aggregation (Table 1 and Figs. 2 and 3). This is likely due to the greater sensitivity of the former index compared to the latter indices when a single cluster is present. In contrast, the Gobiidae were significantly clustered according to the degree of clustering and the index of aggregation on 30 July 2011 and 1 August 2011, but not according to the distance to crowding index. This is likely due to the fact that the latter index only provides meaningful results in the presence of a single cluster in the data, whilst two or three temporal clusters appear to be present in Gobiidae catches on those days (Figs. 5a, b).
sampling night). Significant clustering indices are highlighted in bold with the significance level in brackets below (underlined).

Species or nearest identifiable taxon	Site	Day	\# individuals	Degree of clustering (p)	Index of aggregation (p)	Distance to crowding index (p)
Apogon sp. 1	Buoy 1	2011-08-03	40	1.70 (0.069)	1.72 (0.063)	1.90 (0.001)
Apogon sp. 2	Buoy 1	2011-08-03	48	1.73 (0.012)	1.87 (0.032)	2.11 (0.001)
Apogon sp. 3	Buoy 1	2011-08-01	41	1.99 (0.032)	1.93 (0.034)	2.11 (<0.001)
		2011-08-03	52	1.44 (0.143)	1.59 (0.090)	1.82 (0.003)
Chromis sp.	Buoy 1	2011-07-24	245	2.18 (0.015)	2.29 (0.010)	$1.64 \underline{(<0.001)}$
		2011-08-01	133	1.97 (0.035)	2.07 (0.022)	$1.87 \underline{(<0.001)}$
		2011-08-03	133	1.57 (0.097)	1.68 (0.072)	$1.76 \underline{(<0.001)}$
Gobiidae	Buoy 1	2011-08-01	42	1.99 (0.025)	1.92 (0.026)	1.20 (0.209)
		2011-08-03	27	0.75 (0.685)	0.77 (0.654)	1.18 (0.173)
	Buoy 5	2011-07-26	63	1.39 (0.101)	1.30 (0.140)	0.96 (0.611)
		2011-07-28	38	1.45 (0.128)	1.58 (0.091)	1.39 (0.061)
		2011-07-30	50	1.90 (0.021)	1.80 (0.035)	1.36 (0.178)
Holocentridae	Buoy 1	2011-07-24	31	2.68 (0.002)	2.52 (0.002)	$2.80 \underline{(<0.001)}$
Pomacentrus sp. 1	Buoy 1	2011-07-24	29	2.47 (0.005)	2.78 (0.001)	1.81 (0.001)
Corythoichthys sp. 1	Buoy 1	2011-07-24	105	1.38 (0.140)	1.30 (0.180)	2.51 (0.001)
Synodontidae	Buoy 1	2011-07-24	31	0.45 (0.999)	0.51 (0.994)	0.69 (0.920)
Abudefduf sp. 1	Buoy 1	2011-07-24	248	1.742 (0.060)	1.93 (0.033)	$2.10 \underline{(<0.001)}$
		2011-08-01	53	2.12 (0.022)	2.30 (0.011)	$2.17 \underline{(<0.001)}$
	Buoy 5	2011-07-26	27	1.23 (0.233)	1.23 (0.235)	1.49 (0.011)

239
Table 1. Clustering indices from the SADIE methodology for fish taxa that met the minimum catch requirement (minimum 24 fish of the taxa caught over the

Figure 2. Arrival numbers of different Pomacentrid taxa at Buoy 1 on three different nights. a) Arrival numbers of Chromis sp., the most abundant taxon; b) Abudefduf sp.1, the second most abundant taxon; and c) Pomacentrus sp.1. The scales for the fish counts vary between panels. The time period of the high (H.T.) and low (L.T) tides are indicated above their respective periods and the time of the moon set is indicated with a dashed line and moon symbol. For 24 July there was no moon in the sky during the sampling period. Nights on which a significant temporal cluster in arrival numbers was present for at least one of the clustering indices presented in Table 1 are indicated by an asterisk (*).

Figure 3. Arrival numbers of different Apogonid taxa at Buoy 1 on three different nights. a) Arrival numbers of Apogon sp.1; b) Apogon sp.2; and c) Apogon sp.3. Explanation of the symbols is given in Fig. 2.

Figure 4. Arrival numbers of selected taxa at Buoy 1 on three different nights. The taxa presented all met the selection criteria of >24 individuals on a single sampling night: a) Chorythoichtys sp. 1 (Family: Sygnathidae); b) Holocentridae; and c) Synodontidae. Explanation of the symbols is given in Fig. 2

Figure 5. Arrival numbers on six different nights of Gobiidae at: a) Buoy 1; and b) Buoy 5. Explanation of the symbols is given in Fig. 2. Where >20 individuals were caught at a single sample point, the number of fish caught is indicated above the bar.

Associations

There were significant associations in the arrival numbers among taxa of the same family (e.g.
Pomacentridae: Chromis sp. associated with Abudefduf sp. 1 and Pomacentrus sp.1, and Apogonidae: Apogon sp. 1 associated with Apogon sp.3), but also between taxa from different families (e.g. Chromis sp. associated with Apogon sp.1, and Chromis sp. associated with Gobiidae; Table 2). Most association analyses between taxa only met the inclusion criteria for one of the sampling days (both taxa with >24 individuals caught on the day). Exceptions to this were comparisons between Chromis sp. and Abudefduf sp. 1 (significantly associated on both days; $\mathrm{X}=0.45, \mathrm{p}=0.02$, and $\mathrm{X}=0.68, \mathrm{p}<$ 0.001 on 24 July 2011 and 1 August 2011 respectively), and Chromis sp. and Gobiidae, which were significantly associated on 3 August $2011(X=0.44, \mathrm{p}=0.02)$ but not on 1 August 2011, when the Gobiidae arrived in more than one cluster (Fig. 6).

Table 2. Association indices between temporal arrival numbers of different fish taxa. The comparisons are made only between taxa on days for which both had a total catch of >24 individuals (i.e. average of >1 individual per sampling period). The symbol N/A denotes where no comparisons were possible because one species in each pair had fewer than 24 individuals. The date is indicated in
the top line of the box, followed by the association index below with its significance level and Dutilleul adjusted sample size in brackets. Significant associations are highlighted in bold.

	Chromis sp.	Apogon sp. 1	Apogon sp. 2	Apogon sp. 3	Abudefduf sp. 1	Pomacentrus sp. 1	Corythoichthys sp. 1	Synodontidae	Holocentridae	Significant associations per testable pairs
Chromis sp.	-	-	-	-	-	-	-	-	-	4/9
Apogon sp. 1	$\begin{array}{r} 2011-08-03 \\ 0.37 \\ (0.092 ; 24) \end{array}$	-	-	-	-	-	-	-	-	$1 / 4$
Apogon sp. 2	$\begin{array}{r} 2011-08-03 \\ 0.13 \\ (0.56 ; 21.7) \end{array}$	$\begin{array}{r} 2011-08-03 \\ 0.35 \\ (0.14,22.9) \end{array}$	-	-	-	-	-	-	-	$0 / 4$
Apogon sp. 3	$\begin{array}{r} 2011-08-01 \\ 0.71 \\ (<0.001,24) \end{array}$	$\begin{array}{r} 2011-08-03 \\ 0.69 \\ (0.004,19.8) \end{array}$	$\begin{array}{r} 2011-08-03 \\ 0.36 \\ (0.16,19.8) \end{array}$	-	-	-	-	-	-	$2 / 4$
Abudefduf sp. 1	$\begin{array}{r} 2011-07-24 \\ 0.45 \\ (0.04,22.8) \\ 2011-08-01 \\ 0.68 \\ (<0.001,22.9) \end{array}$	N/A	N/A	N/A			${ }^{-}$	-	-	$1 / 6$
Pomacentrus sp. 1	$\begin{array}{r} 2011-07-24 \\ 0.45 \\ (0.04,22.4) \end{array}$	N/A	N/A	N/A	$\begin{array}{r} 2011-07-24 \\ -0.12 \\ (0.60,23.7) \end{array}$	\square^{-}	-	-	-	$1 / 5$
Corythoichthys sp. 1	$\begin{array}{r} \text { 2011-07-24 } \\ 0.26 \\ (0.32,24) \end{array}$	N/A	N/A	N/A	$\begin{array}{r} 2011-07-24 \\ 0.54 \\ (0.14,11.1) \end{array}$	$\begin{array}{r} 2011-07-24 \\ 0.01 \\ (0.8,21.7) \end{array}$	-	-	-	$0 / 5$
Synodontidae	$\begin{array}{r} 2011-07-24 \\ 0.33 \\ (0.24,21.2) \end{array}$	N/A	N/A	N/A	$\begin{array}{r} 2011-07-24- \\ 0.10 \\ (0.64,21.6) \end{array}$	$\begin{array}{r} 2011-07-24 \\ -0.29 \\ (0.08,20.9) \end{array}$	$\begin{array}{r} 2011-07-24 \\ -0.18 \\ (0.20,21.7) \end{array}$	-	-	$0 / 5$
Holocentridae	$\begin{array}{r} 2011-07-24 \\ 0.33 \\ (0.16,23.8) \end{array}$	N/A	N/A	N/A	$\begin{array}{r} 2011-07-24 \\ 0.58 \\ (0.06,13) \end{array}$	$\begin{array}{r} 2011-07-24 \\ 0.04 \\ (0.82,23.3) \end{array}$	$\begin{array}{r} 2011-07-24 \\ 0.45 \\ (0.12,18.5) \end{array}$	$\begin{array}{r} 2011-07-24 \\ -0.21 \\ (0.14,23.1) \end{array}$	-	$0 / 5$
Gobiidae	$\begin{array}{r} 2011-08-01 \\ -0.01 \\ (0.98,19.8) \end{array}$	$\begin{array}{r} 2011-08-03 \\ 0.35 \\ (0.14,22.9) \end{array}$	$\begin{array}{r} 2011-08-03 \\ -0.14 \\ (0.62,20.3) \end{array}$	$\begin{array}{r} 2011-08-01 \\ 0.002 \\ (0.90,24) \end{array}$	$\begin{array}{r} 2011-07-26 \\ -0.16 \\ (0.72,20.2) \end{array}$	N/A	N/A	N/A	N/A	$1 / 5$
	$\begin{array}{r} 2011-08-03 \\ 0.44 \\ (0.04,23.9) \\ \hline \end{array}$			$\begin{array}{r} 2011-08-03 \\ 0.15 \\ (0.52,18.6) \\ \hline \end{array}$	$\begin{array}{r} 2011-08-01 \\ 0.001 \\ (0.90,19.3) \\ \hline \end{array}$					

Discussion

To our knowledge, this is the first study to present high temporal resolution arrival numbers of settlement stage fish. In this study clear temporal clustering was widespread among the ten most abundant taxa over single night sampling periods, usually involving a single cluster for taxa identified to genus level. Importantly, the arrival pattern in the light traps across the night often differed among taxa, which suggests that different mechanisms could underlie their settlement timing. For the taxa identified Pomacentridae taxa, $82-90 \%$ were caught between 19:00 and 22:00 on all sampling days at Buoy 1, while the three taxa from the next most abundant family, Apogonidae, arrived later in the evening, with 80-85\% caught between 21:00 and 23:00 on 3 August but earlier for Apogonidae sp. 3 on 1 August (19:00-22:00).

The fact that the Gobiidae were present in higher numbers at the site with lower flow could be a strategy to increase their chances of settlement. Indeed, their smaller size compared to other taxa collected is likely to result in slower swimming speeds (reviewed in Leis 2010). This would make active swimming more energetically demanding due to the higher viscosity environment faced by smaller fish (Bellwood and Fisher 2001) and the higher water flow, hence diminishing their settlement success. Although larvae from the Gobiidae family did not appear to arrive at the traps in clusters, this could be a result of the low taxonomic identification level. In fact, an outlier in Fig. 5b where 45 individuals (39% of the total Gobiidae caught on that sampling night) were caught in a single 15 min sampling period, hints at possible high levels of clustering in a narrow time frame. A possible explanation for this high catch could be that the Gobiidae were shoaling, as observed in laboratory and field studies for larvae in this family (Breitburg 1989; Breitburg 1991). This may also be true for the arrival of Synodontidae, which displayed no significant pattern of settlement but did recruit in high numbers on a single sampling period on 24 July (Fig. 4c). However, these conclusions remain speculative.

Comparisons among species forms an important part of this study. Setting aside taxa identified only to family level, where lack of associations might be due to multiple species composition of the catches, the arrival patterns of Apogon sp. 2 and Chorythoichthys sp. 1 were not similar to any of the other taxa.

There was also a lack of association between arrival patterns of two Pomacentrid species, Abudefduf sp. 1 and Pomacentrus sp.1.

Settlement stage larvae of Chromis sp. have been observed to settle in small groups during the daytime (Nolan 1975). Chromis atripectorialis improve orientation consistency, are able to more accurately maintain a bearing, and swim faster when they school compared to movement as individuals (Irisson et al. 2015). This could provide an important survival advantage to larvae that school as this behaviour would enable them to reach a settlement site faster, therefore reducing the time spent in the pelagic environment where they incur high mortality rates (Houde and Zastroe 1993). Persistent aggregations have been found to occur in the splitnose rockfish, Sebastes diploproa, where 11.6% of settlement stage larvae were siblings (Ottmann et al. 2016). Interactions among group members may play a role in maintaining these aggregations from spawning to settlement and could provide the basis for clustering patterns observed in this study. It is important to note, however, that there are a number of other mechanisms which could drive the observed clustering patterns, including concentration of larvae in particular locations due to mesoscale eddies (Shulzitski et al. 2016). It is also unclear how larvae would be able to maintain a school at night without being able to use vision to see other group members, although other senses such as lateral line sensing (Faucher et al. 2010) or vocal communication (Staaterman et al. 2014) may play a role.

There are insufficient sampling days in this study to determine whether different arrival patterns observed among taxa are explained by random arrival of patches of larvae or driven by behaviours aimed at improving settlement for a particular species. Why different taxa have different patterns of arrival could, for example, be due to a trade-off between finding limited suitable settlement habitat and avoiding predators. For Corythoichthys sp.1, that is widespread around the island and settle in seagrass habitat between the reef crest and the shore (pers. obs.), avoidance of predators may be a more important factor than limited habitat availability compared to species that recruit to specific coral types like many pomacentrids. If this were the case, it might explain why they recruit only later in the night when no light is available to predators (Johannes 1978; Dytham and Simpson 2007), and the narrower time frame over which the recruitment occurred in this study (Fig.4a). The latter could
increase their chances of passing through the "wall of mouths" (Hamner et al. 1988) awaiting them at the reef by achieving safety in numbers according to group theory (Bertram 1978).

This study furthers our understanding of the manner in which settlement stage fish recruit to the reef in this critical transition phase, but cannot explain why different species display clustering patterns, whether group behaviour mediates the temporal clustering or how and when the clustering is initiated. Aggregations of larvae prior to settlement have been documented (Patterson et al. 2005), however, whether this is due to environmental processes (e.g. eddies) that concentrate larvae in particular locations or whether behaviour mediates the observed clustering patterns, will require further studies that directly observe larvae during this critical life period..

Acknowledgements

The research was supported through a Natural Environment Research Council doctoral grant and by Operation Wallacea. All work was carried out under permits held by D. Smith issued by the Indonesian Minister for Research and Development.

References

Almany, G.R., and Webster, M.S. 2006. The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs. 25: 19-22.

Bellwood, D.R., and Fisher, R., 2001. Relative swimming speeds in reef fish larvae. Mar. Ecol. Prog. Ser. 211: 299-303.

Bertram, B.C.R. 1978. Living in groups: predators and prey. In Behavioural ecology: an evolutionary approach. Edited by Krebs, J. and Davies, N. Oxford: Blackwell Scientific Publications. pp. 64-96.

Breitburg, D.L. 1989. Demersal schooling prior to settlement by larvae of the naked goby. Environ. Biol. Fish. 26: 97-103.

Breitburg, D. L. 1991. Settlement patterns and presettlement behavior of the naked goby, Gobiosoma bosci, a temperate oyster reef fish. Mar. Biol. 109: 213-221.

Choat, J.H., Doherty, P.J., Kerrigan B.A., and Leis, L.M. 1993. A comparison of towed nets, purse seine, and light aggregation devices for sampling larvae and pelagic juveniles of coral reef fishes. Fish. Bull. 91: 195-209.

Codling, E.A., Pitchford, J.W., and Simpson, S.D. 2007. Group navigation and the 'many wrongs principle' in models of animal movement. Ecology. 88: 1864-1870.

D’Alessandro, E., Sponaugle, S., and Lee, T., 2007. Patterns and processes of larval fish supply to the coral reefs of the upper Florida Keys. Mar. Ecol. Prog. Ser. 331: 85-100.

Dixson, D.L., Abrego, D., and Hay, M.E., 2014. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science. 345: 892-897.

Dixson, D.L., Jones, G.P., Munday, P.L., Planes, S., Pratchett, M.S., Srinivasan, M., Syms, C., and Thorrold, S.R., 2008. Coral reef fish smell leaves to find island homes. Proc R. Soc. B: Biol. Sci. 275: 2831-2839.

Dufour, V., and Galzin, R. 1993. Colonization patterns of reef fish larvae to the lagoon at Moorea Island, French Polynesia. Mar. Ecol. Prog. Ser. 102: 143-152.

Dufour, V., Riclet, E., and Lo-Yat, A. 1996. Colonization of reef fishes at Moorea Island, French Polynesia: temporal and spatial variation of the larval flux. Mar. Freshwater Res. 47: 413-422.

Dutilleul, P., Clifford, P., Richardson, S., and Hemon, D. 1993. Modifying the t test for assessing the correlation between two spatial processes. Biometrics. 49: 305-314.

Dytham, C., and Simpson, S.D. 2007. Elevated mortality of fish larvae on coral reefs drives the evolution of larval movement patterns. Mar. Ecol. Prog. Ser. 346: 255-264.

Faucher, K., Parmentier, E., Becco, C., Vandewalle, N., and Vandewalle, P., 2010. Fish lateral system is required for accurate control of shoaling behaviour. Anim. Behav. 79: 679-687.

Fisher, R., and Bellwood, D.R., 2003. Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Mar. Ecol. Prog. Ser. 263: 177-188.Hamilton, W.D. 1971. Geometry for the selfish herd. J. Theor. Biol. 31: 295-311.

Hamner, W.M., Jones, M.S., Carleton, J.H., Hauri, I.R., and Williams, D.M. 1988. Zooplankton, planktivorous fish, and water currents on a windward reef face - Great Barrier Reef, Australia. Bull. Mar. Sci. 42: 459-479.

Houde, E.D., and Zastrow, C.E. 1993. Ecosystem-and taxon-specific dynamic and energetics properties of larval fish assemblages. Bull. Mar. Sci. 42: 290-335.

Irisson, J.O., Paris, C.B., Leis, J.M., and Yerman, M.N. 2015. With a little help from my friends: group orientation by larvae of a coral reef fish. PloS ONE. 10: e0144060.

Johannes, R.E. 1978. Reproductive strategies of coastal marine fishes in the tropics. Environ. Biol. Fish. 3: 65-84.

Kingsford, M.J. 2001. Diel patterns of abundance of presettlement reef fishes and pelagic larvae on a coral reef. Mar. Biol. 138: 853-867.

Kingsford, M.J., Leis, J.M., Shanks, A., Lindeman, K.C., Morgan, S G., and Pineda, J. 2002. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70: 309-340.

Leis, J.M., and Carson-Ewart, B.M., 1999. In situ swimming and settlement behaviour of larvae of an Indo-Pacific coral-reef fish, the coral trout Plectropomus leopardus (Pisces: Serranidae). Mar. Biol. 134: 51-64.

Leis, J.M., and Carson-Ewart, B.M. 2000. The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae (Vol. 2). Brill.

Leis, J.M., and McCormick, M.I. 2002. The biology, behavior and ecology of the pelagic larval stage of coral reef fishes. In Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem. Edited by Sale, P.F. Academic Press, London, UK. pp. 171-199.

Leis, J.M., Siebeck, U.E., Hay, A.C., Paris, C.B., Chateau, O., and Wantiez, L., 2015. In situ orientation of fish larvae can vary among regions. Mar. Ecol. Prog. Ser. 537: 191-203.

Leis, J.M. 2006. Are larvae of demersal fishes plankton or nekton? Adv. Mar. Biol. 51: 57141.

Leis, J.M. 2010. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57: 325-342.

McIlwain, J.J. 1997. Hydrodynamic flows and the flux of larval fishes across the crest of Ningaloo Reef, Western Australia. Proc. 8th Int. Coral Reef Symp., Panama. 2: 11331138.

Meekan, M.G., Milicich, M.J., and Doherty, P.J. 1993. Larval production drives temporal patterns of larval supply and recruitment of a coral reef damselfish. Mar. Ecol. Prog. Ser. 93: 217-225.

Milicich, M.J. 1988. The distribution and abundance of presettlement fish in the nearshore waters of Lizard Island. Proc. 6th Int. Coral Reef Symp., Townsville, Australia. 2: 785-790.

Milicich, M.J., and Doherty, P.J. 1994. Larval supply of coral reef fish populations: magnitude and synchrony of replenishment to Lizard Island, Great Barrier Reef. Mar. Ecol. Prog. Ser. 110: 121-134.

Montgomery, J.C., Tolimieri, N., and Haine, O.S. 2001. Active habitat selection by presettlement reef fishes. Fish Fish. 2: 261-277.

Nolan, R.S. 1975. The ecology of patch reef fishes. PhD thesis. University of California, San Diego.

Ottmann, D., Grorud-Colvert, K., Sard, N.M., Huntington, B.E., Banks, M.A., and Sponaugle, S., 2016. Long-term aggregation of larval fish siblings during dispersal along an open coast. Proc. Nat. Acad. Sci. 113: 14067-14072.

Patterson, H.M., Kingsford, M.J., and McCulloch, M.T., 2005. Resolution of the early life history of a reef fish using otolith chemistry. Coral Reefs. 24: 222-229.

Perry, J.N. 1998. Measures of spatial pattern for counts. Ecology. 79: 1008-1017.
Perry, J.N., Winder, L., Holland, J.M., and Alston, R.D. 1999. Red-blue plots for detecting clusters in count data. Ecol. Lett. 2: 106-113.

Perry, J.N., and Dixon, P. 2002. A new method for measuring spatial association in ecological count data. Ecoscience. 9: 133-141.

Perry, J.N., Liebhold, A., Rosenberg, M.S., Dungan, J., Miriti, M., Jakomulska, A., and Citron-Pousty, S. 2002. Illustration and guidelines for selecting statistical methods for quantifying spatial patterns in ecological data. Ecography. 25: 578-600.

Piercy, J.J.B., 2015. The Relevance of Coral Reed Soundscapes to Larval Fish Responses. PhD thesis. University of Essex.

Pitcher, T.J. 1986. Functions of shoaling behaviour in teleosts. In The behaviour of teleost fishes. Springer, US. pp. 294-337.

Robertson, D.R., Green, D.G., and Victor, B.C. 1988. Temporal coupling of production and recruitment of larvae of a Caribbean reef fish. Ecology. 69: 370-381.

Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K.D., and Cowen, R.K. 2016. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Nat. Acad. Sci. 113: 6928-6933.

Simpson, S.D., Jeffs, A., Montgomery, J.C., McCauley, R.D., and Meekan, M.G. 2008. Settlement-stage coral reef fishes prefer the higher frequency audible component of reef noise. Anim. Behav. 75: 1861-1868.

Simpson, S.D., Meekan, M.G., Montgomery, J.C., McCauley, R.D., and Jeffs, A. 2005. Homeward sound. Science 308: 221.

Simpson, S.D., Meekan, M.G., McCauley, R.D., and Jeffs, A. 2004. Attraction of settlementstage coral reefs fishes to ambient reef noise. Mar. Ecol. Prog. Ser. 276: 263-268.

Simpson, S.D., Piercy, J.J.B., King, J., and Codling, E.A. 2013. Modelling larval dispersal and behaviour of coral reef fishes. Ecol. Complex. 16: 68-76.

Sponaugle, S., and Cowen, R.K. 1997. Early life history traits and recruitment patterns of Caribbean wrasses (Labridae). Ecol. Monogr. 67: 177-202.

Staaterman, E., Paris, C.B., and Kough, A.S., 2014. First evidence of fish larvae producing sounds. Biol. Lett. 10: 20140643.

Stobutzki, I.C., and Bellwood, D.R. 1997. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149: 35-41.

Veron, J.E.N. 1995. Corals in space and time: the biogeography and evolution of the Scleractinia. Cornell University Press, Ithaca, New York.

Winder, L., Alexander, C., Holland, J.M., Woolley, C., and Perry, J.N. 2001. Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecol. Lett. 4: 568-576.

Wilson, D.T. 2001. Patterns of replenishment of coral reef fishes in the nearshore waters of the San Blas Archipelago, Caribbean Panama. Mar. Biol. 139: 735-753.

Wilson, D.T. 2003. The arrival of late-stage coral reef fish larvae in near-shore waters in relation to tides and time of night. In The big fish bang. Proc. 26th Annual Larval Fish Conf., Institute of Marine Research, Bergen. pp. 345-364.

[^0]: ${ }^{1}$ Current address: Area 8B, Department for the Environment Food and Rural Affairs, Nobel House, 17 Smith Square, London, SW1P 3JR

