7 research outputs found
Functional Connectivity of Brain Structures Correlates with Treatment Outcome in Major Depressive Disorder
Identifying biosignatures to assess the probability of response to an antidepressant for patients with major depressive disorder (MDD) is critically needed. Functional connectivity MRI (fcMRI) offers the promise to provide such a measure. Previous work with fcMRI demonstrated that the correlation in signal from one region to another is a measure of functional connectivity. In this pilot work, a baseline non-task fcMRI was acquired in 14 adults with MDD who were free of all medications. Participants were then treated for 8 weeks with an antidepressant and then clinically re-evaluated. Probabilistic anatomic regions of interest (ROI) were defined for 16 brain regions (eight for each hemisphere) previously identified as being important in mood disorders. These ROIs were used to determine mean time courses for each individual's baseline non-task fcMRI. The correlations in time courses between 16 brain regions were calculated. These calculated correlations were considered to signify measures of functional connectivity. The degree of connectivity for each participant was correlated with treatment outcome. Among 13 participants with 8 weeks follow-up data, connectivity measures in several regions, especially the subcallosal cortex, were highly correlated with treatment outcome. These connectivity measures could provide a means to evaluate how likely a patient is to respond to an antidepressant treatment. Further work using larger samples is required to confirm these findings and to assess if measures of functional connectivity can be used to predict differential outcomes between antidepressant treatments
Recommended from our members
Functional connectivity of brain structures correlates with treatment outcome in major depressive disorder.
Identifying biosignatures to assess the probability of response to an antidepressant for patients with major depressive disorder (MDD) is critically needed. Functional connectivity MRI (fcMRI) offers the promise to provide such a measure. Previous work with fcMRI demonstrated that the correlation in signal from one region to another is a measure of functional connectivity. In this pilot work, a baseline non-task fcMRI was acquired in 14 adults with MDD who were free of all medications. Participants were then treated for 8 weeks with an antidepressant and then clinically re-evaluated. Probabilistic anatomic regions of interest (ROI) were defined for 16 brain regions (eight for each hemisphere) previously identified as being important in mood disorders. These ROIs were used to determine mean time courses for each individual's baseline non-task fcMRI. The correlations in time courses between 16 brain regions were calculated. These calculated correlations were considered to signify measures of functional connectivity. The degree of connectivity for each participant was correlated with treatment outcome. Among 13 participants with 8 weeks follow-up data, connectivity measures in several regions, especially the subcallosal cortex, were highly correlated with treatment outcome. These connectivity measures could provide a means to evaluate how likely a patient is to respond to an antidepressant treatment. Further work using larger samples is required to confirm these findings and to assess if measures of functional connectivity can be used to predict differential outcomes between antidepressant treatments
Recommended from our members
Lessons learned from the eMERGE Network: balancing genomics in discovery and practice
The Electronic Medical Records and Genomics (eMERGE) Network, established in 2007, is a consortium of academic and integrated health systems conducting discovery and implementation research in translational genomics. Here, we outline the history of the network, highlight major impacts and lessons learned, and present the tools and resources developed for large-scale genomic analyses and translation into a clinical setting. The network developed methods to extract phenotypes from the electronic medical record to perform genome-wide and phenome-wide association studies. Recruited cohorts were clinically sequenced off a custom panel for targeted sequencing of variants and monogenic disease risks and returned to participants to investigate the impact of return of genomic results. After generating a 105,000 participant-imputed genome-wide association study (GWAS) dataset for discovery, the network enrolled and sequenced 24,998 participants. Integration of these results into the medical record and the effects of results on participants provided key lessons to the field. These learned lessons inform genetic research in diverse populations and provide insights into the clinical impact of return and implementation of genomic medicine using the electronic medical record. The lessons produced by the eMERGE Network can be utilized by other consortia as translational genomic medicine research evolves