201 research outputs found

    Detrimental Tears

    Get PDF
    For our museum we chose to design it as a walkthrough of a ship used during the Transatlantic trade. Through research we were able to understand how slaves on the ship were treated. We were able to understand that slaves were confined to small spaces while linked together with others during voyages. With this we were able to gather ideas on the layout of our museum. First we chose to put a set of metal chains in the museum to give a sense of how slaves had to be transported. As you walk through you will see what it was like for a slave to be living on the ship. In part of the museum we will have small boxes where someone can sit down and get a feel of how slaves were confined to space while aboard the ship. While sitting there will be a pair of headphones to put on so you will be able to hear the sound of the ocean and other voices.https://csuepress.columbusstate.edu/historyfrombelow/1010/thumbnail.jp

    An Extended Generalized Average Modeling Framework For Power Converters

    Get PDF
    The Generalized Averaged Modeling (GAM) technique is traditionally employed to capture the dynamic performance of power electronic converters. This paper proposes an improved version of it, named the Extended-GAM (EGAM) technique, which supports the multiplication of two Double Fourier Series (DFS) signals in the time domain. Multiplication of DFS signals in the time domain translates to the 2D-convolution of coefficients of the DFS terms of their equivalent Discrete Fourier Image (DFI) representations. Thus, the proposed EGAM technique, capable of capturing many harmonics present in the output of a power converter, effectively captures the dynamic behavior of power converters excited by two distinct frequencies. The proposed technique is then converted into an algorithm suitable for numerical platforms, which typically use Ordinary Differential Equation (ODE) solvers. The proposed algorithm is validated based on the observations of the effects of harmonic truncation. The efficacy of the proposed technique is assessed through a case study, wherein a single-phase inverter employs LC filters on both the dc-link and the ac-side. Finally, it is shown that the results obtained with the proposed method show an excellent congruence between simulation and hardware experimental models. Additionally, the proposed algorithm is packaged into a MATLAB toolbox and shared for future implementations

    Effects of Normal Aging on Visuo-Motor Plasticity

    Get PDF
    Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuomotor plasticity is a form of behavioral neural plasticity which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into a microgravity or underwater environment. In order to determine the effects of aging on visuomotor plasticity, we chose the simple and easily measured paradigm of visual-motor re-arrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel analyses for 73 subjects aged 20 to 80 years. We found no statistically significant difference in measures of visuomotor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity

    University City Sustainability Plan, Fall 2020 & Spring 2021

    Get PDF
    University City Sustainability Plan, Sustainability Exchange, Washington University in St. Louis, Fall 2020 & Spring 202

    Vibration-Heating in ADR Kevlar Suspension Systems

    Get PDF
    The cryogenics group at NASA's Goddard Space Flight Center has a long-standing development and test program for laboratory and space-flight adiabatic demagnetization refrigerators (ADRs). These devices are used to cool components to temperatures as low as 0.05 K. At such low temperatures the ADR systems can provide a few micro-Watts of cooling power, so it is important to minimize the conduction of heat to these cold stages from the surroundings. The cold ADR elements are held in place by thin tensioned strings made of Kevlar, chosen for its high strength and stiffness and low thermal conductivity. During laboratory testing, we have observed that occasional significant additional heat loads on the coldest ADR stages correlate with unusually high vibration levels in the cryostat due to a noisy mechanical cryocooler. We theorized that this heat results from plastic deformation of the Kevlar fibers and frictional interactions among them, driven by the cryostat vibrations. We describe tests and calculations performed in attempt to confirm this source of the heating, and we discuss possible strategies to reduce this effect in future ADR suspension systems

    Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments

    Full text link
    We attempt to provide physical interpretations of light-induced desorption phenomena that have recently been observed for alkali atoms on glass surfaces of alkali vapor cells used in atomic physics experiments. We find that the observed desorption phenomena are closely related to recent studies in surface science, and can probably be understood in the context of these results. If classified in terms of the photon-energy dependence, the coverage and the bonding state of the alkali adsorbates, the phenomena fall into two categories: It appears very likely that the neutralization of isolated ionic adsorbates by photo-excited electron transfer from the substrate is the origin of the desorption induced by ultraviolet light in ultrahigh vacuum cells. The desorption observed in low temperature cells, on the other hand, which is resonantly dependent on photon energy in the visible light range, is quite similar to light-induced desorption stimulated by localized electronic excitation on metallic aggregates. More detailed studies of light-induced desorption events from surfaces well characterized with respect to alkali coverage-dependent ionicity and aggregate morphology appear highly desirable for the development of more efficient alkali atom sources suitable to improve a variety of atomic physics experiments.Comment: 6 pages, 1 figure; minor corrections made, published in e-Journal of Surface Science and Nanotechnology at http://www.jstage.jst.go.jp/article/ejssnt/4/0/4_63/_articl

    Hypertrophy of mature xenopus muscle fibres in culture induced by synergy of albumin and insulin

    Get PDF
    The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres were cultured in a serum-free medium at slack length (mean sarcomere length 2.3 μm) for 8 to 22 days. The medium was supplemented with (final concentrations): (1) bovine insulin (6 nmol/L or 200-600 nmol/L), (2) 0.2% bovine albumin or (3) 0.2% bovine albumin in combination with insulin (120 nmol/L). In culture medium with insulin, 50% of the muscle fibres became in-excitable within 7-12 days, whereas the other 50% were stable. Caffeine contractures of in-excitable muscle fibres produced 80.4±2.4% of initial peak tetanic force, indicating impaired excitation-contraction (E-C) coupling in in-excitable fibres. In the presence of albumin, all cultured muscle fibres were stable for at least 10 days. Muscle fibres cultured in medium with insulin or albumin exclusively did not hypertrophy or change the number of sarcomeres in series. In contrast, muscle fibres cultured with both albumin and insulin showed an increase in tetanic force and fibre cross-sectional area of 19.6±2.8% and 32.5±4.9%, respectively, (means±SEM.; P=0.007) after 16.3±1.7 days, whereas the number of sarcomeres in series remained unchanged. We conclude that albumin prevents muscle fibre damage and preserves E-C coupling in culture. Furthermore, albumin is important in regulating muscle fibre adaptation by a synergistic action with growth factors like insulin. © 2008 The Author(s)

    Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    Get PDF
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members

    How can the MHC mediate social odor via the microbiota community? A deep dive into mechanisms

    Get PDF
    Genes of the major histocompatibility complex (MHC) have long been linked to odor signaling and recently researchers’ attention has focused on MHC structuring of microbial communities and how this may in turn impact odor. However, understanding of the mechanisms through which the MHC could affect the microbiota to produce a chemical signal that is both reliable and strong enough to ensure unambiguous transmission of behaviorally important information remains poor. This is largely because empirical studies are rare, predictions are unclear, and the underlying immunological mechanisms governing MHC-microbiota interactions are often neglected. Here we review the immunological processes involving MHC class II (MHC-II) that could affect the commensal community. Focusing on immunological and medical research, we provide background knowledge for non-immunologists by describing key players within the vertebrate immune system relating to MHC-II molecules (which present extracellular-derived peptides, and thus interact with extracellular commensal microbes). We then systematically review the literature investigating MHC-odor-microbiota interactions in animals and identify areas for future research. These insights will help to design studies that are able to explore the role of MHC-II and the microbiota in the behavior of wild populations in their natural environment and consequently propel this research area forward
    corecore