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64 Lay abstract

65 Determining relatedness in members of the same species through their smell can 

66 help animals cooperate with close relatives or avoid inbreeding. How genetic 

67 information is encoded in odor, and what role immune genes (MHC) and microbes 

68 play in generating odor, as well as how they interact is unclear. We outline the 

69 immune system’s involvement in odor-production, highlight gaps in our knowledge 

70 regarding immune gene and microbe-mediated social communication, and suggest 

71 ways to advance our understanding.

72

73

74 How can the MHC mediate social odor via the microbiota community? A

75 deep dive into mechanisms

76 Abbreviated title: MHC- and microbiota-mediated social odors

77

78 Abstract

79 Genes of the major histocompatibility complex (MHC) have long been linked to odor

80 signaling and recently researchers’ attention has focused on MHC structuring of

81 microbial communities and how this may in turn impact odor. However,

82 understanding of the mechanisms through which the MHC could affect the microbiota

83 to produce a chemical signal that is both reliable and strong enough to ensure

84 unambiguous transmission of behaviorally important information remains poor. This

85 is largely because empirical studies are rare, predictions are unclear, and the

86 underlying immunological mechanisms governing MHC-microbiota interactions are
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87 often neglected. Here we review the immunological processes involving MHC class II

88 (MHC-II) that could affect the commensal community. Focusing on immunological

89 and medical research, we provide background knowledge for non-immunologists by

90 describing key players within the vertebrate immune system relating to MHC-II

91 molecules (which present extracellular-derived peptides, and thus interact with

92 extracellular commensal microbes). We then systematically review the literature

93 investigating MHC-odor-microbiota interactions in animals and identify areas for

94 future research. These insights will help to design studies that are able to explore the

95 role of MHC-II and the microbiota in the behavior of wild populations in their natural

96 environment and consequently propel this research area forward.

97

98 KEYWORDS: Major histocompatibility complex, scent, tolerance, kin recognition, 

99 immune response, systematic review
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109 Introduction

110 Animals use olfactory cues during social communication, and microbiota have been

111 implicated in governing chemical cues relevant for social communication (Archie and

112 Theis 2011; Maraci et al. 2018). Furthermore, genetic determination of the

113 microbiota’s composition (Zoetendal et al. 2001; Stewart et al. 2005) and its shaping

114 by the host immune system, specifically the major histocompatibility complex (MHC)

115 (Toivanen et al. 2001; Kubinak et al. 2015; Wadud Khan et al. 2019), have been

116 hypothesized and investigated. However, the number of empirical studies is limited,

117 and they often neglect the underlying immunological mechanisms linking microbiota

118 and odor, and therefore do not allow the formulation of clear predictions for testing.

119 Thus, the purpose of this review is to summarize the extensive medical and

120 immunological literature linking the key players potentially involved in generating

121 microbial-based odor cues for social communication and to present immunological

122 evidence that could aid in prospective study design and interpretation of results. We

123 first introduce links between the MHC, microbiota, and odor signaling. We then

124 present the state of knowledge of the immunological mechanisms governing host

125 microbial communities. Finally, we systematically review empirical studies

126 investigating MHC-microbiota-odor associations to identify areas in need of future

127 research.

128

129 Odor and social communication

130 Animals use olfactory cues, such as scent marks or body odor, to broadcast

131 information. In mammals, scent marks include secretions from anal, genital, frontal,

132 or sternal glands, as well as urine and feces (Johnson 1973). Birds can perform “bill-

133 wiping” to mark substrates with secretions from their uropygial gland (Whittaker et al.
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134 2014). Similarly, fecal pellets (Gautier and Miaud 2003) and post-cloacal gland

135 secretions (Simons et al. 1994) in amphibians and femoral gland secretions in

136 reptiles (Mason and Parker 2010) can act as scent marks. These secretions appear

137 to play an important role in social communication (Johnson 1973) and there is

138 evidence that scent marks and body odor, which is generated by secretions and

139 metabolites remaining on the body, provide a wealth of information about the

140 dispatcher.

141 Chemical signals can transfer information about an individual’s status (such as sex,

142 age, rank and sexual receptivity (Greene and Drea 2014; Harris et al. 2014; Vaglio et

143 al. 2016; Marneweck et al. 2017; Spence-Aizenberg et al. 2018)) to conspecifics.

144 Similarly, information on general health (Harris et al. 2018), parasite load (Mitchell et

145 al. 2017), or infection and injury (Zala et al. 2004) can be conveyed through scent.

146 This may occur through particular chemicals associated with the infection or the

147 immune response to it (for example Arakawa et al. 2010), or through reallocation of

148 resources or the presence of fever affecting the microbial community (Harris et al.

149 2018). Signature mixtures (variable mixtures of chemicals) can be used for individual

150 and social group recognition (Smith 2006; Scordato et al. 2007; Theis et al. 2012;

151 Theis et al. 2013), and to assess relatedness and genetic compatibility (Charpentier

152 et al. 2008; Stoffel et al. 2015).

153 Usage of such chemical signals can have important fitness consequences as

154 identifying relatives helps to avoid inbreeding depression (Pusey and Wolf 1996) and

155 enables help to be directed towards close relatives, increasing indirect fitness

156 (Hamilton 1964). Apart from determining relatedness, odor might be used to perceive

157 genetic quality of a potential mate (in terms of “good genes” or genetic diversity), and

158 genetic compatibility, which can be independent of overall relatedness (Lenz et al.

159 2009). This may in turn increase genetic quality and thus offspring attractiveness or
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160 survival, resulting in elevated parental fitness (Møller and Alatalo 1999). Both genetic

161 diversity and similarity might be signaled through odor profiles, but assessing

162 similarity requires a self-referencing mechanism for comparing conspecifics’ to an

163 individual’s own odor (Hauber and Sherman 2001).

164 Odors providing information on the genetic make-up of an individual, such as

165 relatedness, quality, and compatibility, are particularly interesting as their nature

166 suggests that they must have a genetic basis. An excellent candidate exhibiting

167 sufficient polymorphism for conveying genetic information while also having an

168 important role in immune response are the genes of the MHC.

169

170 A promising candidate – the MHC

171 The MHC encodes membrane glycoproteins essential for the adaptive immune

172 response (Bjorkman et al. 1987) through regulating discrimination between self-

173 derived and foreign peptides, and is present across jawed vertebrates (Kaufman

174 2018). The MHC molecules bind peptides and present them to professional immune

175 cells, which then either initiate immune response or not (Knapp 2005). MHC

176 molecules are divided into class I and II, with class I molecules (MHC-I) being

177 expressed on nearly all nucleated cells. They present peptides mostly from the

178 cytoplasm to cytotoxic T cells which, once activated, can initiate the death of the

179 MHC-peptide carrying cell (Klein 1986). In contrast, class II (MHC-II) molecules are

180 expressed by professional antigen-presenting cells (APCs) (e.g. macrophages, B

181 cells and dendritic cells, among others), and present engulfed peptides (Neefjes et al.

182 2011). Therefore, MHC-I mostly presents self-derived peptides and peptides

183 originating from viruses or other pathogens that have entered the cell, while MHC-II

184 molecules predominantly present peptides derived from exogenous sources, such as



9

185 bacteria or parasites, that have been ingested by the MHC-II carrying

186 cell(Rammensee et al. 2013). Throughout we refer only to classical MHC,

187 distinguished from nonclassical by solely presenting peptides to T cells and having

188 high expression and polymorphism (Braud et al. 1999; Alfonso and Karlsson 2000).

189 Instead, functions of nonclassical MHC are diverse, including antigen processing and

190 immunomodulatory effects in both innate and adaptive response (Braud et al. 1999;

191 Alfonso and Karlsson 2000).

192 Both classical MHC-I and -II molecules have high polymorphism that is most

193 pronounced in the peptide binding region that contains the peptide binding sites

194 (PBS) interacting directly with the antigen (Bjorkman et al. 1987; Brown et al. 1993).

195 This polymorphism enables presentation of a wide range of peptides, with greater

196 functional difference between alleles, encoding for different PBS, leading to a greater

197 number of peptides bound (Pierini and Lenz 2018). Hence, individuals expressing

198 many different MHC molecules should theoretically be able to detect a higher variety

199 of peptides and thus interact with a greater range of microbes which might in turn be

200 reflected in their odor.

201

202 An army of supporters - the commensal microbial community

203 Animals host a diverse range of microbial phyla on their surfaces such as the skin,

204 glands and gut (Ley et al. 2008). Before birth or hatching, mammals, birds and

205 reptiles reside in environments classically considered sterile, although this view is

206 questioned (Kohl 2012; Perez-Muñoz et al. 2017; Trevelline et al. 2018). After birth or

207 hatching, animals acquire bacteria from their surrounding environment, including the

208 mother’s birth canal and genitalia during birth, as well as from parents, litter or nest

209 mates (Kohl 2012; Sylvain and Derome 2017). Successive colonization events result
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210 in composition shifts until a rather stable commensal population has formed (Luckey

211 1972; Kohl 2012; Oh et al. 2012).

212 Interestingly, microbiota composition can differ considerably between individuals of

213 the same species (Jami and Mizrahi 2012). These inter-individual differences can be

214 related to exogenous factors, such as stochastic microbe population dynamics, diet

215 and environment (reviewed in Spor et al. 2011; Davenport et al. 2014; Rothschild et

216 al. 2018). Additionally, endogenous factors, such as an animal’s stage of life, the

217 body site’s microclimate, and the host’s genotype can influence an individual’s

218 microbiota (Spor et al. 2011). The microbial community appears to display a certain

219 stability and dependence on host genetics, as it can re-establish even after severe

220 perturbation such as antibiotic treatment (for example Antonopoulos et al. 2009).

221 However, evidence from human twin studies investigating the microbiota’s genetic

222 basis is ambiguous with some claiming genetic determination (for example Stewart et

223 al. 2005; Goodrich et al. 2014) while others do not support this dependency (for

224 example Turnbaugh et al. 2009).

225 Hosting microbiota can provide fitness benefits, such as disease resistance

226 (Rosshart et al. 2017) and metabolic efficiency (Tremaroli and Bäckhed 2012),

227 causing the host’s immune system to face a conflict: ensuring clearance of harmful

228 pathogens while simultaneously tolerating beneficial commensals. Disruption of this

229 balance can spark dysregulated or overaggressive immune responses towards

230 harmless materials resulting in persistent inflammations or autoimmune diseases

231 (Chung and Kasper 2010). Hosting microbiota may also help signal information used

232 in social communication (Archie and Theis 2011). Albone and Perry (1974) proposed

233 the fermentation hypothesis stating that microbes inhabiting bodily surfaces produce

234 substances detectable by conspecifics. Regulation by immune genes, such as those
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235 of the MHC, may therefore cause microbiota to reflect their host’s genetic

236 composition (Khan et al. 2019).

237

238 MHC involvement in odor production

239 The MHC may directly affect odor by either binding non-volatile peptides acting as a

240 source of odor (peptide hypothesis) (for example Milinski et al. 2005; Spehr et al.

241 2006; Hinz et al. 2013; Milinski et al. 2013), or less likely, through MHC molecules

242 themselves breaking down to become odorants (MHC molecule hypothesis) (Boehm

243 and Zufall 2006). MHC molecules might also indirectly affect odor in two ways (Fig.

244 1). First, MHC molecules, as key players in the immune response, have the potential

245 to affect the outcome of infections with viruses or parasites thus affecting the health

246 status of an individual, which can be reflected in volatile composition of odor (Kimball

247 et al. 2013; Grieves et al. 2018). Second, MHC molecules might affect odor through

248 regulating the composition of the commensal flora (microflora hypothesis) (Singh et

249 al. 1990). Specifically, these commensal microbes produce volatiles as products of

250 their metabolism and thus influence odor. Due to the MHC’s polymorphism and its

251 central role in the adaptive immune response combined with the diversity of microbial

252 species, regulation of microbially-produced odor cues via the MHC has the potential

253 to generate detailed cues for social communication and thus we decided to further

254 elaborate on this interaction. 

255 Control of the microbiota by the MHC might happen via different mechanisms that

256 can also be of direct and indirect mode. The MHC might govern microbiota directly by

257 binding and presenting peptides and thus inducing an immune response aimed at the

258 peptide source (Howard 1977; further details are given in the paragraph below on the

259 activation of T cells). Alternatively, the MHC might shape microbiota indirectly and
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260 there are several hypotheses describing the mechanism of such an indirect link. As

261 supposed by the peptide-microbe hypothesis, the MHC allele-specific immune

262 responses might affect what molecules are available to the microbiota to metabolize

263 thus influencing microbiota composition and consequently microbially produced

264 odors. Because immune responses are mounted against microbial peptides matching

265 the PBS of the MHC molecule, MHC allele diversity might determine the repertoire of

266 peptide ligands that is available to the microbial community to metabolize.

267 Furthermore, by immunologically controlling microbiota composition, MHC allele

268 diversity might govern molecules and microbial secondary metabolites available to

269 the microbes, the products of which might affect odor (Penn and Potts 1998a).

270 Alternatively, regulation by the MHC might cause inter-specific interactions between

271 microbes and thus indirectly determine microbiota composition by favoring or

272 preventing the establishment of certain species. Additionally, the MHC can influence

273 other adaptive immune mechanisms following peptide detection via the MHC that

274 lead to tolerance towards certain microbiota species (Kubinak et al. 2015; Khan et al.

275 2019; see also the paragraph on the role of IgA).

276 Individuals might discriminate MHC-based microbial odor using a familial imprinting

277 system and thus base their mate choice decisions on learned familiarity cues as

278 observed in mice (Yamazaki et al. 1988). In a more elaborate mechanism called self-

279 referencing, individuals use their own odor as a reference for comparison of

280 conspecific odors to optimize offspring genetics (Reusch et al. 2001; Aeschlimann et

281 al. 2003; Milinski et al. 2005).

282 The underlying chemical properties of the molecules suspected to carry information

283 via direct or indirect mechanisms of MHC-linked odor signaling differ substantially

284 (see Penn and Potts 1998a; Ruff et al. 2012; and Overath et al. 2014 for critical

285 discussion of the mechanisms). Both the peptides bound by MHC molecules as well
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286 as the MHC molecules themselves, which are supposed to serve as odorants, are

287 non-volatile peptides. Despite their non-volatility, there is strong evidence for MHC

288 peptide ligands to convey information about the MHC. Female sticklebacks have

289 been shown to use a self-referencing mechanism and count alleles of their potential

290 mates to optimize their offspring’s MHC composition (Reusch et al. 2001;

291 Aeschlimann et al. 2003). In a further experiment Milinski et al. (2005) determined the

292 source of information used by the female sticklebacks by experimentally modifying

293 the odor of males with synthetic MHC peptide ligands. Thus, it is possible for MHC

294 genotype to be detected without the involvement of the microbiome. However, non-

295 volatile peptides are unlikely to be the only indicators of MHC genotype as the urine

296 of MHC-congenic mice devoid of peptides could still be discriminated (Singer et al.

297 1993; Kwak et al. 2009). This suggests that volatile molecules produced by the

298 bacterial metabolism might generate MHC-based odors as well. In addition, while

299 MHC-dependent peptide ligands corresponding to different MHC molecules can

300 evoke unique activation patterns reflecting MHC composition (Leinders-Zufall et al.

301 2004), many MHC molecules can bind the same set of peptides. For example, up to

302 50% of peptide ligands bind multiple MHC-I molecules in humans (Rao et al. 2011).

303 Overlap in MHC-mediated activation patterns would prevent unambiguous sensory

304 discrimination of MHC composition suggesting that additional information may be

305 required to reliably determine MHC genotype via odor.

306

307
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308

309 Figure 1. MHC-microbiota interactions in chemical communication. Schematic of the

310 interactions between genes of the MHC and the microbiota and their potential influence on

311 odor. MHC polymorphism (blue arrows) might directly influence odor (solid arrows) through

312 volatile and non-volatile by-products such as urinary signals or peptide ligands or indirectly

313 (dashed arrows) by influencing infection status or through regulation of the microbiota (green

314 arrow) producing volatiles.

315

316 Potential MHC-related mechanisms of microbiota structuring

317 With its immunological function and high polymorphism, the MHC rightly is a

318 promising candidate for governing microbially-derived odor cues. However, still many

319 questions remain unanswered. For example: How does a system evolved to

320 eliminate pathogens establish tolerance to microorganisms? How does the MHC
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321 orchestrate microbiota composition and maintain its stability? How does MHC

322 diversity affect microbiota composition?

323 Knowledge of the immunological mechanisms of MHC-microbiota interaction poses

324 the basis for establishing hypotheses and for the interpretation and validation of

325 results, and four conflicting predictions of the relationship between MHC and

326 microbial diversity have been made. One possibility is a negative correlation between

327 MHC diversity and microbiota diversity (Bolnick et al. 2014; Leclaire et al. 2019).

328 Considering the MHC’s role in the response to pathogens and that each MHC

329 molecule binds a particular repertoire of peptides, a higher diversity of MHC

330 molecules might lead to a higher diversity of peptides presented and thus a larger

331 number of microbes that can be eliminated, causing lower microbiota diversity (Fig.

332 2A). Second, it is possible that we may observe the reverse relationship, with higher

333 MHC-II diversity causing higher microbiota diversity (Hernández-Gómez et al. 2018).

334 This is possible because the immune system does not only eliminate microbes but

335 also forms symbiotic bonds with commensals, hence a positive correlation may arise

336 if a higher diversity of MHC molecules initiates tolerance to a more diverse range of

337 microbes (Fig. 2B). Consequently, both negative and positive relationships signaled

338 via the microbiota should theoretically enable detection of MHC diversity. Third,

339 certain MHC motifs might also interact with specific groups of microbes, leading to

340 covariation of MHC genotypes with specific microbial community structuring (Fig.

341 2C). This association of certain MHC alleles with particular microbes could allow the

342 detection of specific alleles and thus enable choosing a mate with complementary

343 MHC alleles via self-referencing. Finally, MHC and microbiota diversity or

344 composition may not be linked, as genes other than the MHC or environmental

345 influences might determine the commensal community of a host (Fig. 2D). Indeed,

346 the specificity between MHC genotype and microbiota community should not be



16

347 assumed a-priori. The great variety of microbial species and microbial peptides

348 derived from each species results in a plethora of different peptides that can act as

349 ligands for MHC molecules. Hence it is possible that the great diversity in MHC

350 ligands impedes specificity of MHC-II-bound microbes (Rammensee et al. 1999).

351

352

353 Figure 2. MHC-microbiota interaction. (A) A negative correlation is characterized by high MHC

354 diversity leading to low microbiota diversity. (B) A positive correlation is caused by high MHC 

355 diversity tolerating more diverse microbiota communities. (C) Covariation between MHC 

356 genotypes and microbiota community structure is caused by specific MHC binding motifs 

357 selecting for the presence of certain groups of microbes. (D) No detectable relationship 

358 between MHC and microbiota community indicates the MHC is not a major determinant of the

359 microbiota community.

360

361 MHC-microbiota interactions will also be affected by the diverse habitats that

362 microbes experience on different host surfaces. A recent meta-analysis investigating

363
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364 the association of environmental and host physiological and phylogenetic factors with

365 the microbiome indicates that external microbiomes, such as skin or feather

366 microbiomes, are best explained by environmental factors such as precipitation

367 seasonality and temperature (Woodhams et al. 2020). In contrast, internal

368 microbiomes derived from feces or the gut, were best explained by host associated

369 factors such as immune complexity/phylogeny, trophic level or diet, and climate.

370 Moreover, within the same host or even organ, body site-specific microclimates

371 cause varying local microbial communities (Spor et al. 2011), and tissue-specific

372 immunological adaptations limiting inflammation and increasing tolerance to

373 microbes exist. Nonetheless, different organs such as the skin and the gut also show

374 major histological and immunological commonalities (Artis 2008; Pasparakis et al.

375 2014). Both organs have an epithelia-cover, rely on immune response initiated by

376 MHC-II-bearing cells and share tolerance-facilitating components (Hepworth et al.

377 2013; Kobayashi et al. 2019). Hence, the relationship between MHC-II and the

378 microbiota should theoretically apply similarly to different organs. However,

379 understanding of the immunological crosstalk between the microbiota and tissues

380 remains limited.

381

382 Understanding the immunological mechanisms – what we know so far

383 Understanding the causal connections between the MHC and the microbiota might

384 reveal new questions and solve existing challenges in diverse fields. Hence, we now

385 provide an overview of MHC-related mechanisms initiating either an immune

386 response or tolerance of microbiota. Specifically, we review findings from

387 immunology and medical research, particularly in mice and humans, where the

388 interplay between the immune system and commensal bacteria has been extensively
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389 researched. However, we do not aim at explaining these immunological processes in

390 their great complexity and detail but rather focus on the mechanisms involving the

391 MHC and the microbiota (for further review, see Marietta et al. 2015; Honda and

392 Littman 2016). We want to provide immunological background knowledge on the

393 interrelation of the MHC and the microbiota potentially important for chemical

394 communication for a non-immunologist audience to help explain the observed

395 patterns of MHC and microbiota correlation and covariation in empirical studies.

396 We note that there are reports of the MHC, particularly MHC-I, directly influencing

397 odor either through the MHC molecules itself or its peptide ligands acting as odor

398 cues (for example Leinders-Zufall et al. 2004). Nonetheless, as we want to

399 summarize findings that help understand the possible interactions of the MHC with

400 microorganisms as a potential regulator of odor, we focus only on MHC-II because

401 these molecules predominantly present phagocytized antigens originating from

402 extracellular microorganisms, such as commensals. 

403

404  Starting the fight – or not? Initiating the adaptive immune response

405 Antigen-presenting cells (APCs), such as B cells or macrophages, phagocytize and

406 process peptides and present them with their MHC-II molecules together with other

407 surface molecules to helper T (Th) cells, a certain type of T (developing in the

408 thymus) cell (Neefjes et al. 2011). The interaction between the APC and the Th cell

409 can either cause an immune response towards the presented antigen (Fig. 3A) or no

410 response (Fig. 3B) (Jurewicz and Stern 2019). Activation of the Th cell only occurs if

411 it can recognize the antigen and thus T cell responses depend on the repertoire of T

412 cell receptors (TCRs) available, which is determined during T cell development and

413 maturation.
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414 During T cell development, tolerance to certain antigens is initiated in a two-step

415 process, called positive and negative selection, within the thymus (reviewed in detail

416 in Jurewicz and Stern 2019). During positive selection, T cells are selected for their

417 ability to respond to MHC-self-peptide complexes, with those that do not respond

418 being eliminated (Huseby et al. 2005). The second step, negative selection,

419 describes the elimination of T cell receptors showing an excessive response to MHC-

420 self-peptide complexes (Klein et al. 2014). Thereby, T cells potentially causing

421 autoimmune reactions are excluded. Once outside of the thymus, the remaining T

422 cells receive boosting signals from MHC II-bearing cells which stimulates their

423 survival. Consequently, the diversity of the TCR repertoire together with the MHC-II

424 molecules determines the set of peptides against which an adaptive immune

425 response is mounted. Thus, complementary to the mechanisms by which MHC-II

426 diversity might impact microbiota composition (see also the paragraph on MHC-

427 related microbiota structuring), the TCR diversity has the potential to regulate the

428 commensal microbiota.

429 But how exactly does the MHC’s polymorphism influence the TCR repertoire, thus

430 affecting adaptive immune responses and potentially governing microbiota?

431 Theoretical models suggest that MHC diversity can be negatively linked to the TCR

432 repertoire retained after selection in the thymus (Nowak et al. 1992; Woelfing et al.

433 2009). This relationship depends on the higher diversity of MHC molecules leading to

434 more TCRs being removed during negative selection because of self-reactiveness.

435 Thus, individuals should try to achieve an intermediate number of MHC alleles in

436 their offspring to optimize resistance to parasites (Wegner, Reusch, et al. 2003;

437 Wegner, Kalbe, et al. 2003). An empirical study on bank voles (Myodes glareolus)

438 supports this negative relationship between MHC diversity and TCR repertoire,
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439 though only for MHC-I and not MHC-II (Migalska et al. 2019). Consequently, the

440 relationship between MHC-II and TCR diversity has not been fully explained.

441 Apart from the interplay between the TCR and the MHC-II during thymic selection,

442 the type of T cell involved as well as additional signals can influence the outcome of

443 the APC-T cell interaction (Benchareau and Steinman 1998). For naive Th cells that

444 have not encountered the antigen before, activation by the MHC-II-peptide-complex

445 alone does not cause an immune response. Instead, it requires additional

446 costimulation from the APC consisting of an interaction of different receptors present

447 during inflammation to elicit an immune response (the ‘danger signal’). Lack of this

448 second costimulatory signal can thus prevent immune responses towards antigens of

449 non-pathogenic origin (Fig. 3B; Bour-Jordan et al. 2011; Chen and Flies 2013) and

450 facilitate symbiotic relationships with commensals.

451 Once a Th cell has been activated by an APC through the MHC-II-peptide complex in

452 combination with a costimulatory signal, it can in turn activate other immune cells,

453 such as B cells. This causes B cells to initiate antibody production (Fig. 3A).

454 Furthermore, B cells can bind and internalize free antigens via their B-cell receptor,

455 initiating their maturation and antibody production as well. More frequently than that,

456 B cells act as APCs themselves, presenting peptides via their MHC-II molecules to T

457 cells to initiate activation of further immune cells such as other B cells (Sprent 1984).

458 Consequently, as B cells themselves carry MHC-II molecules and T cells depend on

459 MHC-II-carrying APCs for activation, B cell-T cell interaction as well as antibody

460 production by B cells depend on the allelic polymorphism of MHC-II (Hiinig and

461 Schimpl 1979; Sprent 1984).

462

463
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464 Tiny but mighty – IgA performs diverse tasks

465 After activation by MHC-II-activated Th cells, B cells can produce antibodies, called

466 immunoglobulins of the class A (IgA). This class of antibodies performs diverse tasks

467 and plays an important role in mediating tolerance to commensals on mucous

468 surfaces such as the gut. IgA not only combats viruses, bacteria and toxins through

469 neutralization, agglutination, and binding (Pabst 2012), but is also involved in

470 diminishing inflammatory and oxidative responses towards microbiota and reducing

471 their pathogenicity (Peterson et al. 2007; Cullender et al. 2013). This key role in

472 regulating tolerance is demonstrated in patients with low IgA-levels who suffer from

473 an overactive or misregulated immune response (Ammann and Hong 1971; Teahon

474 et al. 1994). 

475 The interaction between APC, Th cell, and B cell necessary to initiate antibody

476 production depends on the diversity of MHC-II molecules. A more diverse repertoire

477 of MHC-II molecules on APCs enables detection of a wider range of peptides.

478 Consequently, a wider range of peptides recognized by MHC-II molecules interacts

479 with a more diverse set of Th cells and thus results in a more diverse set of activated

480 B cells producing a more diverse set of IgA. In turn, the resulting larger IgA

481 repertoires facilitate tolerance against a wider range of microbes (Fransen et al.

482 2015). For example, Fransen et al. (2015) demonstrated a positive relationship

483 between IgA diversity and microbiota diversity in two mice strains differing in several

484 immunological features. As similar levels of IgA diversity could not be achieved by

485 cohousing of mice nor by fecal transplants in one strain, they concluded that contact

486 with microbiota alone might not be sufficient to increase IgA diversity and that there

487 might be a genetic basis to the production of diverse IgA. By influencing the IgA

488 repertoire, MHC-II diversity might hence be positively linked to microbiota diversity

489 through facilitating tolerance responses.
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490 Keeping the peace – Treg cells and ILCs

491 Apart from mounting immune responses aimed at eliminating pathogens, the immune

492 system must be capable of tempering inflammation to protect tissues from oxidative

493 damage, to promote tolerance to benign foreign entities, and to enable symbiotic

494 relationships with commensals. Hence the immune system includes anti-

495 inflammatory components such as regulatory T (Treg) cells (Fontenot et al. 2005)

496 and innate lymphoid cells (ILCs), which are involved in maintaining homeostasis

497 towards commensal microbiota (Hepworth et al. 2013; Hepworth et al. 2015).

498 Alterations in this anti-inflammatory response can have severe consequences for the

499 immune system and the microbiota. Inhibiting the ability of ILCs to process and

500 present peptides through selective deletion of their surface-bound MHC-II molecules

501 causes a dysregulated immune response towards commensal bacteria and thus

502 facilitates spontaneous intestinal inflammation (Hepworth et al. 2013). These findings

503 indicate an MHC-II-dependent mechanism involving ILCs by which homeostasis is

504 promoted and overreactive immunological responses against commensal microbiota

505 are reduced. Furthermore, ILCs intrinsically expressing MHC-II induce cell death of T

506 cells that act against commensal bacteria thus providing a potential role for the MHC-

507 II to act on microbiota composition through enhancing tolerance (Hepworth et al.

508 2015).

509 Similar to the inhibition of ILCs, the loss of specific Treg cells can have

510 consequences for gut homeostasis and involves a decline in IgA levels (Cong et al.

511 2009), which in turn have an important role in shaping the microbiota community (see

512 previous section). These findings were reinforced by discoveries made by Josefowicz

513 et al. (2012) who created mice deficient in a certain type of Treg cell and thereby

514 caused increased levels of cytokines acting against extracellular parasites paired



23

515 with mucosa-associated inflammation. Since these mice additionally showed an

516 altered microbiota composition, they concluded that these Treg cells play an

517 important role in orchestrating the composition of the microbiota. 

518 For the generation of both Th and Treg cells, microbiota appear to play a crucial role

519 (for example Strauch et al. 2005; Atarashi et al. 2008). Kawamoto et al. (2014) even

520 postulated a symbiotic regulatory loop in which Treg cells modulate microbial

521 diversity by tempering inflammation and facilitating higher IgA diversity (Fig. S5).

522 Likewise, increased microbiota diversity promotes Treg cell diversity and thus IgA

523 diversity. Consequently, as T cell and B cell activation and thus IgA production is

524 linked to MHC-II polymorphism, MHC-II diversity has the potential to influence

525 microbiota composition and diversity via this symbiotic regulatory loop including IgA

526 and Treg cells. MHC-II polymorphism displays potential in attenuating adaptive

527 immune responses and enhancing tolerance towards microbiota. However, despite

528 evidence for the MHC-II initiating and regulating adaptive immune responses aimed

529 at the microbiota, the mechanisms of how exactly MHC-II allelic diversity affects

530 tolerance towards a broader community of microbes has yet to be answered.
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531

532 Figure 3. Immune response. Steps of immune response involving MHC-II leading to (A) 

533 elimination and (B) tolerance of the pathogen. (A) (1) After recognition by an APC, the peptide

534 is internalized, processed and (2) presented by the MHC-II. (3) Interaction of the MHC-II-
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535 peptide-complex with the TCR together with an inflammatory costimulatory signal cause Th 

536 cell activation. (4) Inflammation is further exacerbated through cytokine release by Th cells, 

537 (5) causing activation of cytotoxic T cells and increased proliferation of immune cells. 

538 Activated Th cells (6) activate B cells that (7) produce antibodies. (B) (1) The type of APC as 

539 well as (2) the processing of the peptide can influence peptide recognition. (3) MHC-II and 

540 TCR strongly affect the set of presented peptides and the type of response. (4) MHC-II 

541 diversity is genetically determined, whereas the TCR repertoire is also determined by thymic 

542 selection. (5) ILCs can temper inflammation by inducing cell death of T cells acting against 

543 commensal bacteria. (6) In case of missing costimulation through an inflammatory signal, Th 

544 cell activation is prevented. (7) IgA produced by B cells can facilitate tolerance. (8) Treg cells 

545 promote IgA diversity and thus temper inflammation. Arrows displaying processes are colored

546 in grey, cellular or humoral components are colored in green.

547

548 Systematic review of the evidence

549 To investigate the current evidence provided by empirical studies on the mechanisms

550 linking the MHC, microbiota, and odor, we systematically reviewed the literature up to

551 30th January 2020 in both PubMed and Web of Science. We excluded human

552 studies, as they include cultural, technological, and socioeconomic features unique to

553 humans (reviewed in Winternitz and Abbate 2015), which could influence microbiota,

554 odor, and behavior. Full steps for the systematic review, including search terms,

555 PRISMA flowchart, studies included and excluded, and reasons for exclusions, can

556 be found in the supplementary materials (Tab. S1-S3, Fig. S1-4, supplementary

557 methods).

558 Overall, we screened 577 publications (from both search engines combined, no

559 duplicates) and retained 64 publications relevant for our review (listed in Table S1-

560 S3). These were subdivided into those on the relationship between the microbiota
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561 and odor (n = 6 studies; Table S1), the MHC and odor (n = 51 studies; Table S2),

562 and the MHC and the microbiota (n = 7 studies; Table S3). We did not find any

563 publication that had investigated the interaction of all three components: MHC,

564 microbiota, and odor.

565 Through additional searching for relevant publications in recent reviews and

566 publications, we found nine publications (including 3 studies not indexed) that had

567 not been captured by our systematic search. However, we agree with Nakagawa and

568 Lagisz (2019) that comprehensiveness of a systematic review can be impracticable

569 or even impossible to achieve. Instead, requirements of a good systematic review are

570 unbiasedness and transparency in the search process. This can be achieved by

571 conducting the searches in at least two data bases and predefining search and data

572 extraction strategies (Nakagawa et al. 2017). Since we fulfill these prerequisites of

573 best practice, we contend that our systematic search is of appropriate quality and

574 defend the usage of our search strings (to be comprehensive, the nine relevant but

575 missing studies are included in the supplementary methods and labeled as such).

576 Thus, we added nine relevant publications (microbiota and odor: n = 5 publications;

577 MHC and odor: n = 2 publications; MHC and microbiota: n = 3 publications, with one

578 publication (Zomer et al. 2009) found in our search for MHC and odor covering both

579 topics), yielding a total number of 73 relevant publications. In the following sections,

580 we summarize these findings (an extensive list of publications can be found in the

581 supplementary materials, Table S1-S3).

582

583 Microbiota and odor

584 The 11 publications that have investigated potential links between microbiota and

585 odor have been conducted solely on wild species (with the exception of one hybrid; a

586
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587 Bengal cat (Felis catus × Prionailurus bengalensis)) (Table S1). Support for a

588 relationship between microbes and volatile chemicals that compose odor profiles

589 comes from studies on spotted hyenas (Crocuta crocuta) (Theis et al. 2013),

590 European badgers (Buesching et al. 2016), meerkats (Suricata suricatta) (Leclaire et

591 al. 2017) and South American tree frogs (Boana prasina) (Brunetti et al. 2019), in

592 which odor and microbiota profiles, obtained from secretions from the subcaudal

593 scent pouch or gland, anal glands and skin respectively, showed significant

594 covariation. However, this was not the case in great tits (Parus major) (Jacob et al.

595 2018) and Carolina dark-eyed juncos (Junco hyemalis carolinensis) (Whittaker et al.

596 2016). Despite missing covariation between odor and microbiota profiles in Carolina

597 dark-eyed-juncos, which might be caused by either only a subset of the microbiota

598 contributing to odor or redundancy in the odor-producing members of the microbial

599 community, the ability of members of the microbiota community to produce volatiles

600 found in secretions has been demonstrated in northern dark-eyed juncos (Junco

601 hyemalis hyemalis) (Whittaker et al. 2019). Likewise studies on meerkats (Leclaire et

602 al. 2017) and a Bengal cat (Yamaguchi et al. 2019) found microbes associated with

603 volatile production, suggesting that microbes contribute to odor in these species.

604 Evidence for the involvement of bacteria in odor generation also comes from African

605 elephants (Loxodonta africana), where Goodwin et al. (2016) showed that removal of

606 bacteria from exogenously aging urine of African Elephants hindered the formation of

607 odorous compounds.

608 Evidence for a causal mechanism linking the microbiota community and odor was

609 found in a study conducted by Whittaker et al. (2019) in which antibiotics were used

610 to artificially perturb the microbiota in northern dark-eyed juncos. This treatment

611 affected the volatile odor profile, which had been linked to the presence of particular

612 bacterial species in a previous experiment on Carolina dark-eyed juncos (Whittaker
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613 et al. 2016). Support for a direct link between microbiota and odor also comes from a

614 comparable study on European hoopoe nestlings (Upupa epops) (Martín-Vivaldi et

615 al. 2010) and from Indian mongooses, in which secretions from antibiotically treated

616 anal pockets were observed to lack chemical compounds that are present in

617 secretions of untreated anal pockets (Gorman et al. 1974).

618 All eleven studies investigated the effect of microbiota on odor by analyzing odor

619 profiles developed using gas chromatographic methods such as gas chromatography

620 – mass spectrometry (GC-MS, a technique that separates odor into its chemical

621 subcomponents based on chemical properties and mass), and studies did not

622 investigate whether chemical differences were detected or responded to by

623 conspecifics. Thus, evidence for the ability of animals to detect these differences in

624 the odor profiles for social communication is still lacking.

625

626 MHC and odor

627 The influence of the MHC on odor has been of particular interest in studies of MHC-

628 dependent mate choice as well as kin discrimination. In this regard, the ability of

629 animals to detect MHC-differences in conspecifics’ or other animals’ odors has been

630 studied extensively (reviewed in Kwak et al. 2010). In early studies, laboratory

631 animals were trained to differentiate between odors of conspecifics or other

632 laboratory species. Results showed that mice could discriminate between odors of

633 strains differing only at the MHC (Bard et al. 2000; Willse et al. 2006), that MHC-

634 linked odor differences are already detectable in pups (Yamazaki et al. 1992), and

635 that fetal MHC-odortype is discriminable in pregnant mice (Beauchamp et al. 1994).

636 However, these pioneering studies often rely on small sample sizes of laboratory

637 strains using mostly Y-maze odor discrimination trials (Table S2). A criticism of odor
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638 discrimination trials is that the ability to discriminate odors could arise due to training,

639 resulting in laboratory animals discriminating cues that their untrained counterparts

640 cannot distinguish in a natural situation (Penn and Potts 1998b). Our literature search

641 found 19 preference trials testing untrained animals (both wild or wild-caught (n = 14)

642 and laboratory (n = 5)) in flow chambers or y-mazes, and these studies

643 predominantly support an important role for MHC-based cues in mate choice or kin

644 recognition (for example Grieves et al. 2019). Importantly, preference trials have

645 since been complimented by habituation/dishabituation trials under naturalistic

646 settings, fortifying evidence for the discriminability of MHC-based odor differences

647 (Brown et al. 1989; Penn and Potts 1998b) with a certain minimum distance at the

648 peptide-binding site (Carroll et al. 2002) and odor formation based on soluble MHC

649 molecules (Pearse-Pratt et al. 1998; Janssen et al. 2001).

650 Although underrepresented, studies on MHC-odor interaction have also been

651 conducted on animals living in the wild or on wild-type animals held in captivity (n=

652 18 of 51 studies), and generally show support for a link between MHC and odor. For

653 example, in song sparrows (Melospiza melodia), black-legged kittiwakes (Rissa

654 tridactyla), and mandrills (Mandrillus sphinx) (Setchell et al. 2011; Leclaire et al.

655 2014; Slade et al. 2016; Grieves et al. 2019), there are positive correlations between

656 MHC genetic distance and chemical distance of the odor profile, the latter being

657 established using GC-MS. Of the two studies on captive ring-tailed lemurs (Lemur

658 catta), one found a statistically non-significant relationship between the absence of

659 certain MHC sequences and the concentration of volatile compounds in samples

660 obtained from the brachial gland and the tail (Knapp et al. 2006) while the other

661 found that MHC diversity and similarity is signaled via genital secretions in a sex- and

662 season-dependent manner (Grogan et al. 2019).
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663 In addition to support from correlational studies, wild animals have been shown to

664 discriminate MHC-based odor differences in conspecifics. For example, Arctic char

665 (Salvelinus alpinus) discriminate between siblings who do and do not share the same

666 MHC-genotype as themselves (Olsén et al. 1998). Similarly juvenile Atlantic salmon

667 (Salmo salar) and brook trout (Salvelinus fontinalis) spent more time in water

668 conditioned by kin sharing MHC-alleles than in water conditioned by kin not sharing

669 MHC-alleles when given the choice in a flow chamber (Rajakaruna et al. 2006).

670 Captive ring-tailed lemurs also discriminate MHC-diversity in the genital odors of

671 opposite-sex conspecifics as they spent more time investigating or reacting to genital

672 secretions of MHC-similar compared to MHC-dissimilar scent donors (Grogan et al.

673 2019).

674 Despite the MHC’s potential importance, external influences such as diet can have

675 stronger impact on odortype (Brown et al. 1996; Kwak et al. 2008) and hinder

676 discrimination of odortypes (Schellinck et al. 1993; Schellinck et al. 1997).

677 Interestingly, odors lacking MHC-derived peptides have been discriminable (Singer et

678 al. 1993) and carboxylic acids appear to play a role in shaping laboratory mouse

679 odortypes and their discriminability (Singer et al. 1997). The circumstances under

680 which the MHC is important in odor communication are therefore unclear and further

681 research is warranted to detangle genetic from environmental influences on odor.

682

683 MHC and microbiota

684 Apart from directly influencing odor through shed MHC molecules or MHC peptide

685 ligands, MHC-II has the potential to indirectly shape odor by governing microbiota

686 (Fig. 2). In European plaice (Pleuronectes platessa), a weak but significant

687 correlation between MHC-IIB matrices and pathogen abundance matrices of gill
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688 microbiota was observed with certain alleles being positively linked to the presence

689 of certain bacterial genera (Wegner et al. 2012). In male Leach’s storm petrels

690 (Oceanodroma leucorhoa) MHC-II DAB homozygosity explained 72% of variation in

691 the microbiota community structure of the uropygial gland (Pearce et al. 2017).

692 Similarly, Holstein dairy cows expressing two different MHC variants exhibit a

693 different composition of microbiota in their mammary glands on the day of calving but

694 not on following days (Derakhshani et al. 2018). These studies provide evidence for a

695 link between the MHC and the microbiota community, but they do not offer insights

696 into the mechanisms acting in MHC-based microbiota structuring.

697 Studies on blue petrels (Halobaena caerulea) (Leclaire et al. 2019) and sticklebacks

698 (Gasterosteus aculeatus) (Bolnick et al. 2014) present evidence for a negative

699 correlation between MHC diversity and microbial diversity (Table S3), supporting the

700 hypothesis that a diverse MHC genotype causes detection and elimination of more

701 microbiota species and thus a less diverse microbiota community. However, not all

702 studies found a negative relationship. For instance, in eastern hellbenders

703 (Cryptobranchus alleganiensis bishopi), individual MHC amino acid distance was

704 positively linked to microbial community richness (Hernández-Gómez et al. 2018).

705 Furthermore, in laboratory mice, MHC heterozygosity has been shown to enhance

706 functional diversity of the microbiome (Wadud Khan et al. 2019). The primary role of

707 the MHC-II in shaping the microbiota and its role in presenting extracellular rather

708 than intracellular peptides is also supported by Kubinak et al. (2015) who show that

709 MHC-II had a stronger influence on the microbiota than MHC-I.

710 Although our search strings did not yield publications linking all three components

711 (the MHC, microbiota, and odor), the search aimed at MHC-odor interactions yielded

712 a study investigating the influence of the MHC on both odor and the microbiota

713 (Zomer et al. 2009). It showed that in laboratory mice the MHC affected both volatile
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714 and microbiota profiles, however the effect of the MHC was weaker than the effect of

715 the genetic strain of the study animals. These findings are supported by another

716 study on laboratory mice indicating that both MHC haplotype and background

717 genotype impact odor profiles (Lanyon et al. 2007). However, although the study by

718 Zomer et al. (2009) included all three components, it did not investigate the link

719 between microbiota and odor, so it is unclear to what degree MHC-odor relationships

720 might be impacted by the microbiota. Furthermore, GC-MS was used to investigate

721 the effect of MHC on the odor profiles. While this is an appropriate technique for the

722 question in hand, it leaves unanswered whether animals can make use of these

723 subtle composition differences for social communication. Therefore, evidence of the

724 MHC and the microbiota acting on odor to provide reliable information for social

725 interactions has yet to be demonstrated.

726

727 Composition of retrieved studies regarding study type and species

728 Overall, results of our systematic review show that most studies focus on

729 correlational rather than causal investigation of interactions between MHC and

730 microbiota (n = 6 correlational vs n = 3 experimental studies). However, this pattern

731 is reversed for studies linking MHC and odor (n = 6 correlational vs n = 46

732 experimental studies; plus one observational/methodological publication), caused by

733 the great number of experimental studies on laboratory animals. For publications

734 investigating the relationship between microbiota and odor the proportion is almost

735 equal (n = 5 correlational vs n = 6 experimental studies). Altogether, publications

736 using laboratory-reared animals, mostly mice and rats, make up a similar portion

737 (37/73) compared to publications investigating wild or wild-type animals (36/73).
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738 The phylogenetic composition of the study species used varies between the three

739 links investigated. Whereas rodents make up the majority of study animals for

740 publications investigating the link between MHC and odor (65%, 35/54, Fig. 4) with

741 the remaining portion of study species stemming from 8 different taxonomic orders,

742 study species of publications investigating MHC and microbiota and microbiota and

743 odor are more evenly distributed over five (microbiota and odor) and six (MHC and

744 microbiota) different taxonomic orders. The relationship between MHC and

745 microbiota and between MHC and odor has so far not been investigated in

746 carnivores, and for fish evidence for a link between microbiota and odor is missing.

747 Furthermore, there is a gap in publications investigating the link between MHC and

748 microbiota and microbiota and odor in reptiles and the interrelation between the MHC

749 and odor has not yet been investigated in amphibians.

750

751 Figure 4. Study species used in studies investigating the links between MHC and microbiota, 

752 between MHC and odor, and between microbiota and odor. Number of publications that 

753 investigated either the link between MHC and microbiota, the MHC and odor, and the 
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754 microbiota and odor is represented for the different classes. Within classes, publication 

755 numbers are further broken down into taxonomic orders.

756

757 Compiling the empirical evidence for potential mechanisms regulating MHC-based

758 microbiota structuring showed that 5 publications retrieved in our systematic search

759 found a link between the composition of the MHC and the composition of the

760 microbiota community (Wegner et al. 2012; Kubinak et al. 2015; Pearce et al. 2017;

761 Derakhshani et al. 2018; Wadud Khan et al. 2019). In contrast, there were no

762 publications found that contest the link between MHC and microbiota composition

763 (Fig. 5), although publication bias of positive results cannot be ruled out. Publications

764 investigating the effect of MHC diversity on microbiota diversity also miss non-

765 significant results, showing support for two opposing hypotheses instead. Two

766 studies provide support for a limiting effect of MHC diversity on microbiota diversity,

767 causing a negative relationship (Bolnick et al. 2014; Leclaire et al. 2019) while

768 evidence for a positive relationship between MHC diversity and microbiota diversity

769 comes from a single study (Hernández-Gómez et al. 2018). Thus, further studies are

770 necessary to clarify whether the MHC has a role in affecting social odors through

771 shaping the microbiota community and to determine the potential mechanisms acting

772 between the MHC and the microbiota.
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773

774 Figure 5. Empirical evidence for the relationship between MHC composition or diversity and 

775 the microbiota community. Number of publications investigating the link between MHC 

776 diversity or composition and the composition of the microbiota community (A) and MHC 

777 diversity or composition and microbiota diversity (B). Publications investigating the 

778 relationship between MHC composition or diversity and the composition of the microbial 

779 community (A) invariably provide evidence for a link between MHC diversity/composition and 

780 the composition of the microbial community (“yes”) while no publications have been published

781 that question this link due to non-significant results (“n.s.”). Publications investigating the 

782 relationship between MHC diversity or composition and the diversity of the microbial 

783 community (B) either provide evidence for a negative correlation (high MHC diversity causing 

784 low microbiota diversity, “low”) or for a positive relationship (high MHC diversity causing high 

785 microbiota diversity, “high”). There are no publications showing a non-significant relationship 

786 between MHC and microbiota diversity (“n.s.”).

787

788 Knowledge gaps and future outlook

789 Despite 73 publications investigating the interaction of the microbiota and odor, the

790 MHC and odor, or the MHC and microbiota, their results do not yield clear patterns

791
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792 explaining the relations. Thus, we list several suggestions and recommendations for

793 future studies to develop credible evidence for the proposed mechanisms (Fig. 1 &

794 2).

795 (i) Findings on MHC-microbiota correlation are ambiguous and study numbers are

796 low. For wild mammals, evidence for any of the mechanisms governing these links

797 comes from a single publication only, which did not investigate the relationship

798 between MHC diversity and microbiota structure (Pearce et al. 2017). Our review of

799 the immunological processes points to possibilities for the MHC to both limit and

800 facilitate microbiota diversity (Fig. S5). Hence we argue researchers should

801 investigate whether patterns of MHC-microbiota diversity are consistent within

802 species with varying levels of MHC-II diversity. Studies involving a diverse range of

803 species and comparing the microbes of different body sites (including scent glands)

804 would be particularly beneficial as they will allow investigation of the circumstances

805 under which positive, negative and no relationships between MHC and microbial

806 diversity are found.

807 An alternative explanation of the mixed results between MHC and microbial diversity

808 is based on the optimality hypothesis (Nowak et al. 1992; Woelfing et al. 2009).

809 Imagine a U-shaped curve with microbial richness on the y-axis and MHC diversity

810 on the x-axis, where the optimum MHC allelic diversity has the lowest microbial

811 diversity. On the left side of the MHC optimum the relationship between MHC and

812 microbiota diversity would be negative. On the right of the optimum, the relationship

813 between MHC and microbiota diversity would be positive. Thus, to test the optimality

814 hypothesis multiple data points from the same study species at different MHC

815 variabilities (or different microbiota diversities) are required.
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816 (ii) While there is clear evidence for the ability of wild animals to discriminate odor

817 cues based on MHC in an experimental setting, there is a lack of studies

818 demonstrating the application of this MHC-based discrimination of conspecifics for

819 inbreeding avoidance or cooperation in order to increase fitness. We encourage

820 studies on wild animals to verify use of this mechanism in a natural context. This

821 could be performed in wild species for which the ability to discriminate has already

822 been shown or on wild species for which, due to their behavior in mate choice or

823 other social contexts, MHC-based odor discrimination may yield a substantial fitness

824 benefit. MHC genotyping as well as odor and microbiota profiles combined with life

825 history and behavioral data can provide evidence and thus help unravel whether

826 decisions having severe fitness consequences are based on MHC-and microbiota-

827 governed social odor cues in the natural context.

828 (iii) Researchers should base their experiments on sample sizes that allow reliable

829 conclusions. The extreme polymorphism of the MHC makes it a promising target for

830 governing odor cues used in social communication, but simultaneously it causes

831 studies investigating the role of the MHC in shaping odor or the microbiota to require

832 relatively large sample sizes in order to have enough power to detect small effect

833 sizes (Gaigher et al. 2019). Researchers should consider the level of MHC

834 polymorphism found in their study organisms and the likely effect size when

835 designing their studies, for example by performing power analyses.

836 (iv) Researchers should be aware that both microbiota and odor are affected by

837 genetic loci other than the MHC as well as exogenous factors. Studies have reported

838 that other proteins, such as MUPs, play an important role in odor discrimination in

839 mice (Cheetham et al. 2007) and that the mouse laboratory strain appears to have an

840 even stronger impact on odor than the MHC (Zomer et al. 2009). However, MUPs are

841 not universal to all species and we therefore recommend testing the influence of the
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842 MHC while controlling for genetic similarity or relatedness (e.g. using high coverage

843 SNPs, microsatellites or a pedigree) in order to disentangle the effect of the MHC

844 from the influence of other loci.

845 (v) Our systematic review showed that studies focusing on MHC-microbiota and

846 microbiota-odor interaction in wild animals mostly use correlational approaches and

847 causal evidence is lacking. While experimental investigation of causal mechanisms is

848 particularly difficult in wild animals, it is nonetheless necessary to demonstrate the

849 usage of MHC- and microbiota-governed odor cues in social communication in a

850 natural context. This could be achieved by artificially altering odor by adding MHC

851 ligands (for example Milinski et al. 2005; Spehr et al. 2006; Hinz et al. 2013; Milinski

852 et al. 2013) to the odor profile. Another option might be the modification of microbiota

853 composition either with fecal transplants (reviewed in Lively et al. 2014) or with

854 antibiotics (Gorman et al. 1974; Whittaker et al. 2019). However, antibiotic treatment

855 might have additional confounding effects impacting odor. Furthermore, potential

856 negative effects of antibiotics and the possibility of facilitating resistances in microbes

857 should be considered when designing a study. Another functional approach is testing

858 whether microbiota found in the commensal community of an animal produce

859 odorants present in its volatile profile. Discrimination of odors produced by a host

860 versus those produced by its microbiota is vital to uncover the microbiota’s role in

861 chemical communication.

862 (vi) Theories suggest that either MHC molecules themselves, the volatiles the MHC

863 molecules might carry or volatiles developing due to the MHC’s role in binding

864 peptides could be potential sources of odor (Penn and Potts 1998a). However, what

865 chemical components apart from MHC peptide ligands can enable or contribute to

866 the discriminability of MHC-based odors has not yet been clearly determined. Most

867 studies investigating MHC-governed odor profiles focus on GC-MS to determine the
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868 volatile components of odor. Few studies have investigated the role of proteins in

869 influencing odors governed by the MHC, with some showing that proteins or MHC

870 molecules are not necessary for the discrimination of odor (Brown et al. 1987; Singer

871 et al. 1993), that MHC molecules alone do not ensure odor discriminability, and that

872 MHC cannot be discriminated through serum (Brown et al. 1987). Contrariwise, other

873 studies investigating the role of proteins in the generation of odor show that injection

874 of soluble MHC molecules or soluble MHC peptide ligands alters odor (Pearse-Pratt

875 et al. 1998; Janssen et al. 2001; Milinski et al. 2010). These conflicting findings hint

876 for a role of proteins such as MHC molecules themselves or their ligands influencing

877 odor through binding or regulating volatiles rather than being an odor source

878 themselves. Thus, we suggest that studies, apart from focusing solely on volatiles,

879 should also look at other compounds such as proteins to help unravel the mechanism

880 behind MHC-based odor regulation.

881 (vii) We need studies with a holistic approach combining interactions of all three

882 components, the MHC, the microbiota, and odor, as, to our knowledge, no studies

883 have investigated the links of all components simultaneously. For example, there is

884 evidence that the MHC directly impacts on male Storm Petrels’ microbiota

885 composition (Pearce et al. 2017) and that odor profiles reflect genetic distance at the

886 MHC (Leclaire et al. 2014; Slade et al. 2016; Grieves et al. 2019). However, causal

887 links between all three are missing and it is unclear whether MHC, odor and

888 microbiota are directly linked or if the MHC affects odor and the microbiota through

889 separate mechanisms. Investigating the interconnections of all three in focal species

890 could reveal the mechanisms underlying chemical communication and disclose the

891 roles and interrelations of the MHC, the microbiota and odor.

892
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893 Conclusion

894 The MHC-II as an essential part of the complex immunological network has the

895 potential to affect the microbiota and consequently odor through various pathways.

896 Findings regarding immunological mechanisms suggest that MHC-II diversity can

897 potentially facilitate microbiota diversity by inducing tolerance rather than solely limit

898 its diversity through elimination. However, the small number of empirical studies

899 conducted thus far have produced mixed results, with some finding negative or no

900 relationship. Insights from immunology provide great potential for unravelling MHC-

901 microbiota-odor interactions by presenting new starting points and hypotheses, and

902 we hope that this review stimulates advances in the investigation and understanding

903 of this potential key pathway for social communication.
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1395 Figure captions

1396 Figure 1. MHC-microbiota interactions in chemical communication. Schematic of the 

1397 interactions between genes of the MHC and the microbiota and their potential 

1398 influence on odour. MHC polymorphism (blue arrows) might directly influence odour 

1399 (solid arrows) through volatile and non-volatile by-products such as urinary signals or

1400 peptide ligands or indirectly (dashed arrows) by influencing infection status or 

1401 through regulation of the microbiota (green arrow) producing volatiles. 

1402

1403 Figure 2. MHC-microbiota interaction. (A) A negative correlation is characterized by 

1404 high MHC diversity leading to low microbiota diversity. (B) A positive correlation may 

1405 be caused by high MHC diversity tolerating more diverse microbiota communities. 

1406 (C) Covariation between MHC genotypes and microbiota community structure may 

1407 be caused by specific MHC binding motifs selecting for the presence of certain 

1408 groups of microbes. (D) No detectable relationship between MHC and microbiota 

1409 community may indicate the MHC is not a major determinant of the microbiota 

1410 community.

1411

1412 Figure 3. Immune response. Steps of immune response involving MHC-II leading to 

1413 (A) elimination and (B) tolerance of the pathogen. (A) (1) After recognition by an 

1414 APC, the peptide is internalized, processed and (2) presented by the MHC-II. (3) 

1415 Interaction of the MHC-II-peptide-complex with the TCR together with an 

1416 inflammatory costimulatory signal cause Th cell activation. (4) Inflammation is further 

1417 exacerbated through cytokine release by Th cells, (5) causing activation of cytotoxic 

1418 T cells and increased proliferation of immune cells. Activated Th cells (6) activate B 

1419 cells that (7) produce antibodies. (B) (1) The type of APC as well as (2) the 
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1420 processing of the peptide can influence peptide recognition. (3) MHC-II and TCR 

1421 strongly affect the set of presented peptides and the type of response. (4) MHC-II 

1422 diversity is genetically determined, whereas the TCR repertoire is also determined by

1423 thymic selection. (5) ILCs can temper inflammation by inducing cell death of T cells 

1424 acting against commensal bacteria. (6) In case of missing costimulation through an 

1425 inflammatory signal, Th cell activation is prevented. (7) IgA produced by B cells can 

1426 facilitate tolerance. (8) Treg cells promote IgA diversity and thus temper 

1427 inflammation. Arrows displaying processes are colored in grey, cellular or humoral 

1428 components are colored in green.

1429

1430 Figure 4. Study species used in studies investigating the links between MHC and 

1431 microbiota, between MHC and odor, and between microbiota and odor. Number of 

1432 publications that investigated either the link between MHC and microbiota, the MHC 

1433 and odor, and the microbiota and odor is represented for the different classes. Within

1434 classes, publication numbers are further broken down into taxonomic orders.

1435

1436 Figure 5. Empirical evidence for the relationship between MHC composition or 

1437 diversity and the microbiota community. Number of publications investigating the link 

1438 between MHC diversity or composition and the composition of the microbiota 

1439 community (A) and MHC diversity or composition and microbiota diversity (B). 

1440 Publications investigating the relationship between MHC composition or diversity and

1441 the composition of the microbial community (A) invariably provide evidence for a link 

1442 between MHC diversity/composition and the composition of the microbial community 

1443 (“yes”) while no publications have been published that question this link due to non-

1444 significant results (“n.s.”). Publications investigating the relationship between MHC 
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1445 diversity or composition and the diversity of the microbial community (B) either 

1446 provide evidence for a negative correlation (high MHC diversity causing low 

1447 microbiota diversity, “low”) or for a positive relationship (high MHC diversity causing 

1448 high microbiota diversity, “high”). There are no publications showing a non-significant

1449 relationship between MHC and microbiota diversity (“n.s.”).
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