116 research outputs found

    Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis

    Get PDF
    Background: Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. Methods: The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. Results: Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca2+ homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca2+ level and ER stress response. Conclusions: Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca2+ homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer.ope

    Survivin as a potential therapeutic target of acetylsalicylic acid in pituitary adenomas

    Get PDF
    ©Németh et al. Acetylsalicylic acid (ASA) is known as a cancer preventing agent, but there is no data available regarding the effect of ASA on pituitary cells. We investigated 66 nonfunctioning (NFPA) and growth hormone (GH)- producing adenomas and 15 normal pituitary samples. Functional assays (cell viability, proliferation, flow cytometry cell cycle analysis, caspase-3 activation and DNA degradation) were applied to explore the effect of ASA, YM155 (survivin inhibitor), survivin-targeting siRNA and TNF-related apoptosis-inducing ligand (TRAIL) in RC-4B/C and GH3 cells. Pituitary adenoma xenografts were generated in immunocompromised mice. We found that survivin was overexpressed and TRAIL was downregulated in NFPAs compared to normal pituitary tissue. ASA decreased proliferation but did not induce apoptosis in pituitary cells. Additionally, ASA treatment decreased cells in S phase and increased cells in G2/M phase of the cell cycle. Inhibition of survivin using an inhibitor or siRNA-mediated silencing reversed the ASA-induced growth inhibition partially. In addition, we also found survivin-independent effects of ASA on the cell cycle that were mediated through inhibition of cyclin A, cyclin dependent kinase 2 (CDK2) and phospho-CDK2. We also aimed to test the effect of acetylsalicylic acid in an animal model using RC-4 B/C cells, but in contrast to GH3 cells, RC-4 B/C cells failed to adhere and grow a xenograft. We concluded that ASA inhibited the growth of pituitary adenoma cells. Survivin inhibition is a key mechanism explaining its antineoplastic effects. Our results suggest that inhibition of survivin with small molecules or ASA could serve as potential therapeutic agents in NFPA.DING This work has been funded by Hungarian Scientific Research Grant (OTKA PD116093 to Henriett Butz) and by Semmelweis Research-Innovation Fund (STIA-KF-17 to Henriett Butz). Attila Patocs received the “Lendulet” grant from Hungarian Academy of Sciences. Henriett Butz is a recipient of Bolyai Research Fellowship of Hungarian Academy of Sciences. Kinga Németh received NTPEFÖ-P-15 grant from The Ministry of Human Capacities

    Otoconin-90 Deletion Leads to Imbalance but Normal Hearing: A Comparison with Other Otoconia Mutants

    Get PDF
    Our sense of gravitation and linear acceleration is mediated by stimulation of vestibular hair cells through displacement of otoconia in the utricle and saccule (the gravity receptor organ). We recently showed that otoconin-90 (Oc90) deletion led to formation of giant otoconia. In the present study, we determined the extent to which the giant otoconia affected balance and gravity receptor sensory input and compared the findings with other otoconia mutants. We employed a wide spectrum of balance behavioral tests, including reaching and air-righting reflexes, gait, swimming, beam-crossing, rotorod latencies, and a direct measure of gravity receptor input, vestibular evoked potentials (VsEPs). All tests on homozygous adult mutants consistently ranked the order of imbalance as (from worst to best) Nox3het<otopetrin 1tlt<Oc90 null<Oc90 wild type and C57Bl/6 mice using systematic statistical comparisons of the frequency of occurrence or the severity of abnormal functions. This order coincides with the degree of otoconia deficiencies and is consistent with VsEP measures. Notably, all mice (except Nox3het) showed remarkable learned adaptation to peripheral vestibular deficits by staying on the rotating rod significantly longer in each successive trial, and the rate and extent of such learned improvements ranked the same order as their initial balance ability. Despite the vestibular morbidity, Oc90 null mice had normal hearing, as measured by auditory brainstem responses (ABRs) and distortion products of otoacoustic emissions (DPOAEs). The study demonstrates that the remnant otoconia mass in Oc90 nulls does stimulate the gravity receptor organs, which was likely responsible for the improved balance performance relative to strains with absent otoconia. Furthermore, the combination of direct electrophysiological measures and a series of behavioral tests can be used to interpret the imbalance severity arising from altered inputs from the gravity receptor end organ. Originally published Neuroscience, Vol. 153, No. 1, Apr 200

    Genetic characterization of large parathyroid adenomas

    Get PDF
    In this study, we genetically characterized parathyroid adenomas with large glandular weights, for which independent observations suggest pronounced clinical manifestations. Large parathyroid adenomas (LPTAs) were defined as the 5% largest sporadic parathyroid adenomas identified among the 590 cases operated in our institution during 2005–2009. The LPTA group showed a higher relative number of male cases and significantly higher levels of total plasma and ionized serum calcium (P<0.001). Further analysis of 21 LPTAs revealed low MIB1 proliferation index (0.1–1.5%), MEN1 mutations in five cases, and one HRPT2 (CDC73) mutation. Total or partial loss of parafibromin expression was observed in ten tumors, two of which also showed loss of APC expression. Using array CGH, we demonstrated recurrent copy number alterations most frequently involving loss in 1p (29%), gain in 5 (38%), and loss in 11q (33%). Totally, 21 minimal overlapping regions were defined for losses in 1p, 7q, 9p, 11, and 15q and gains in 3q, 5, 7p, 8p, 16q, 17p, and 19q. In addition, 12 tumors showed gross alterations of entire or almost entire chromosomes most frequently gain of 5 and loss of chromosome 11. While gain of 5 was the most frequent alteration observed in LPTAs, it was only detected in a small proportion (4/58 cases, 7%) of parathyroid adenomas. A significant positive correlation was observed between parathyroid hormone level and total copy number gain (r=0.48, P=0.031). These results support that LPTAs represent a group of patients with pronounced parathyroid hyperfunction and associated with specific genomic features

    Coenzyme Q10 Reduces Ethanol-Induced Apoptosis in Corneal Fibroblasts

    Get PDF
    Dilute ethanol (EtOH) is a widely used agent to remove the corneal epithelium during the modern refractive surgery. The application of EtOH may cause the underlying corneal fibroblasts to undergo apoptosis. This study was designed to investigate the protective effect and potential mechanism of the respiratory chain coenzyme Q10 (CoQ10), an electron transporter of the mitochondrial respiratory chain and a ubiquitous free radical scavenger, against EtOH-induced apoptosis of corneal fibroblasts. Corneal fibroblasts were pretreated with CoQ10 (10 µM) for 2 h, followed by exposure to different concentrations of EtOH (0.4, 2, 4, and 20%) for 20 s. After indicated incubation period (2–12 h), MTT assay was used to examine cell viability. Treated cells were further assessed by flow cytometry to identify apoptosis. Reactive oxygen species (ROS) and the change in mitochondrial membrane potential were assessed using dichlorodihydrofluorescein diacetate/2′,7′-dichlorofluorescein (DCFH-DA/DCF) assays and flow-cytometric analysis of JC-1 staining, respectively. The activity and expression of caspases 2, 3, 8, and 9 were evaluated with a colorimetric assay and western blot analysis. We found that EtOH treatment significantly decreased the viability of corneal fibroblasts characterized by a higher percentage of apoptotic cells. CoQ10 could antagonize the apoptosis inducing effect of EtOH. The inhibition of cell apoptosis by CoQ10 was significant at 8 and 12 h after EtOH exposure. In EtOH-exposed corneal fibroblasts, CoQ10 pretreatment significantly reduced mitochondrial depolarization and ROS production at 30, 60, 90, and 120 min and inhibited the activation and expression of caspases 2 and 3 at 2 h after EtOH exposure. In summary, pretreatment with CoQ10 can inhibit mitochondrial depolarization, caspase activation, and cell apoptosis. These findings support the proposition that CoQ10 plays an antiapoptotic role in corneal fibroblasts after ethanol exposure

    Contribution of Caspase(s) to the Cell Cycle Regulation at Mitotic Phase

    Get PDF
    Caspases have been suggested to contribute to not only apoptosis regulation but also non-apoptotic cellular phenomena. Recently, we have reported the involvement of caspase-7 to the cell cycle progression at mitotic phase by knockdown of caspase-7 using small interfering RNAs and short hairpin RNA. Here we showed that chemically synthesized broad-spectrum caspase inhibitors, which have been used to suppress apoptosis, prevented the cell proliferation in a dose-dependent manner, and that the subtype-specific peptide-based caspase inhibitor for caspase-3 and -7, but not for caspase-9, inhibited cell proliferation. It was also indicated that the BIR2 domain of X-linked inhibitor of apoptosis protein, functioning as an inhibitor for caspase-3 and -7, but not the BIR3 domain which plays as a caspase-9 inhibitor, induced cell cycle arrest. Furthermore, flow cytometry revealed that the cells treated with caspase inhibitors arrested at G2/M phase. By using HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, the prevention of the cell proliferation by caspase inhibitors induced cell cycle arrest at mitotic phase accompanying the accumulation of the substrates for APC/C, suggesting the impairment of the APC/C activity at the transition from M to G1 phases. These results indicate that caspase(s) contribute to the cell cycle regulation at mitotic phase

    A Noncoding Point Mutation of Zeb1 Causes Multiple Developmental Malformations and Obesity in Twirler Mice

    Get PDF
    Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance
    corecore