715 research outputs found

    Current distribution and giant magnetoimpedance in composite wires with helical magnetic anisotropy

    Full text link
    The giant magnetoimpedance effect in composite wires consising of a non-magnetic inner core and soft magnetic shell is studied theoretically. It is assumed that the magnetic shell has a helical anisotropy. The current and field distributions in the composite wire are found by means of a simultaneous solution of Maxwell equations and the Landau-Lifshitz equation. The expressions for the diagonal and off-diagonal impedance are obtained for low and high frequencies. The dependences of the impedance on the anisotropy axis angle and the shell thickness are analyzed. Maximum field sensitivity is shown to correspond to the case of the circular anisotropy in the magnetic shell. It is demonstrated that the optimum shell thickness to obtain maximum impedance ratio is equal to the effective skin depth in the mahnetic material.Comment: 23 pages, 7 figure

    Modeling of torsion stress giant magnetoimpedance in amorphous wires with negative magnetostriction

    Full text link
    A model describing the influence of torsion stress on the giant magnetoimpedance in amorphous wires with negative magnetostriction is proposed. The wire impedance is found by means of the solution of Maxwell equations together with the Landau-Lifshitz equation, assuming a simplified spatial distribution of the magnetoelastic anisotropy induced by the torsion stress. The impedance is analyzed as a function of the external magnetic field, torsion stress and frequency. It is shown that the magnetoimpedance ratio torsion dependence has an asymmetric shape, with a sharp peak at some value of the torsion stress. The calculated field and stress dependences of the impedance are in qualitative agreement with results of the experimental study of the torsion stress giant magnetoimpedance in Co-based amorphous wires.Comment: 17 pages, 5 figure

    Spatial Patterns Induced Purely by Dichotomous Disorder

    Full text link
    We study conditions under which spatially extended systems with coupling a la Swift-Hohenberg exhibit spatial patterns induced purely by the presence of quenched dichotomous disorder. Complementing the theoretical results based on a generalized mean-field approximation, we also present numerical simulations of particular dynamical systems that exhibit the proposed phenomenology

    Pseudoconvex domains spread over complex homogeneous manifolds

    Full text link
    Using the concept of inner integral curves defined by Hirschowitz we generalize a recent result by Kim, Levenberg and Yamaguchi concerning the obstruction of a pseudoconvex domain spread over a complex homogeneous manifold to be Stein. This is then applied to study the holomorphic reduction of pseudoconvex complex homogeneous manifolds X=G/H. Under the assumption that G is solvable or reductive we prove that X is the total space of a G-equivariant holomorphic fiber bundle over a Stein manifold such that all holomorphic functions on the fiber are constant.Comment: 21 page

    Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion

    Full text link
    We present theoretical and experimental study of preparing maximally entangled two-photon polarization states, or Bell states, using femtosecond pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be removed by using an interferometric technique without spectral and amplitude post-selection. We then analyze the recently introduced Bell state preparation scheme using type-I SPDC. Theoretically, both methods offer the same results, however, type-I SPDC provides experimentally superior methods of preparing Bell states in femtosecond pulse pumped SPDC. Such a pulsed source of highly entangled photon pairs is useful in quantum communications, quantum cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR

    On the cohomology of pseudoeffective line bundles

    Full text link
    The goal of this survey is to present various results concerning the cohomology of pseudoeffective line bundles on compact K{\"a}hler manifolds, and related properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in the case where the curvature is merely semipositive in the sense of currents, and the base manifold is not necessarily projective. In this situation, one can still obtain interesting information on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained a general K{\"a}hler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1,1)-currents, based on the use of Bergman kernels, and the related intersection theory of currents. Another important ingredient is the recent proof by Guan and Zhou of the strong openness conjecture. As an application, we discuss a structure theorem for compact K{\"a}hler threefolds without nontrivial subvarieties, following a joint work with F.Campana and M.Verbitsky. We hope that these notes will serve as a useful guide to the more detailed and more technical papers in the literature; in some cases, we provide here substantially simplified proofs and unifying viewpoints.Comment: 39 pages. This survey is a written account of a lecture given at the Abel Symposium, Trondheim, July 201

    Extreme Electron-Phonon Coupling in Boron-based Layered Superconductors

    Full text link
    The phonon-mode decomposition of the electron-phonon coupling in the MgB2-like system Li_{1-x}BC is explored using first principles calculations. It is found that the high temperature superconductivity of such systems results from extremely strong coupling to only ~2% of the phonon modes. Novel characteristics of E_2g branches include (1) ``mode lambda'' values of 25 and greater compared to a mean of 0.4\sim 0.4 for other modes, (2) a precipitous Kohn anomaly, and (3) E_2g phonon linewidths within a factor of ~2 of the frequency itself, indicating impending breakdown of linear electron-phonon theory. This behavior in borne out by recent inelastic x-ray scattering studies of MgB2 by Shukla et al.Comment: 4 two-column pages, 4 figures. Equations simplified. Figure 4 changed. Comparison with new data include

    Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam

    Full text link
    Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.

    Evidence for muon neutrino oscillation in an accelerator-based experiment

    Get PDF
    We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure
    corecore