52 research outputs found

    Association of Bacteroides acidifaciens relative abundance with high-fibre diet-associated radiosensitisation

    Get PDF
    Funding Information: This work was funded by Cancer Research UK Programme grant C5255/ A23755 and Wellcome Trust Investigator Award 209397/Z/17/Z. The funding body had no role in the design of the study; in the collection, analysis, and interpretation of data; or in the writing of the manuscript. Acknowledgements We thank Professor Simon Kroll and Dr. Anderson Ryan for their very helpful comments. We thank Dr. Jia-Yu Ke at Research Diets, Inc. for formulation of the mouse diets, Dr. Lisa Folkes for assistance with the faecal butyrate quantification, and Omega Bioservices (Georgia, USA) for the 16S rRNA gene sequencing on a MiSeq platform.Peer reviewedPublisher PD

    The role of dietary supplements, including biotics, glutamine, polyunsaturated fatty acids and polyphenols, in reducing gastrointestinal side effects in patients undergoing pelvic radiotherapy : A systematic review and meta-analysis

    Get PDF
    Funding Information: This work was supported by Cancer Research UK Programme grant [C5255/A23755]. Chee Kin Then’s DPhil is funded by the Clarendon Fund, Balliol College and CRUK. The funding body had no role in the study design, collection, analysis, interpretation of data or in writing the manuscript.Peer reviewedPublisher PD

    DNA repair gene XRCC1 polymorphisms and bladder cancer risk

    Get PDF
    BACKGROUND: Cigarette smoking and chemical occupational exposure are the main known risk factors for bladder transitional cell carcinoma (TCC). Oxidative DNA damage induced by carcinogens present in these exposures requires accurate base excision repair (BER). The XRCC1 protein plays a crucial role in BER by acting as a scaffold for other BER enzymes. Variants in the XRCC1 gene might alter protein structure or function or create alternatively spliced proteins which may influence BER efficiency and hence affect individual susceptibility to bladder cancer. Recent epidemiological studies have shown inconsistent associations between these polymorphisms and bladder cancer. To clarify the situation, we conducted a comprehensive analysis of 14 XRCC1 polymorphisms in a case-control study involving more than 1100 subjects. RESULTS: We found no evidence of an association between any of the 14 XRCC1 polymorphisms and bladder cancer risk. However, we found carriage of the variant Arg280His allele to be marginally associated with increased bladder cancer risk compared to the wild-type genotype (adjusted odds ratio [95% confidence interval], 1.50 [0.98–2.28], p = 0.06). The association was stronger for current smokers such that individuals carrying the variant 280His allele had a two to three-fold increased risk of bladder cancer compared to those carrying the wildtype genotype (p = 0.09). However, the evidence for gene-environment interaction was not statistically significant (p = 0.45). CONCLUSION: We provide no evidence of an association between polymorphisms in XRCC1 and bladder cancer risk, although our study had only limited power to detect the association for low frequency variants, such as Arg280His

    The Histone Deacetylase Inhibitor Romidepsin Spares Normal Tissues While Acting as an Effective Radiosensitizer in Bladder Tumors in Vivo

    Get PDF
    Funding Information: This work was funded by Cancer Research UK (CRUK; C5255/A23755). J.L.R. was funded by CRUK (project grant C15140/A19817). C.K.T. was funded by a CRUK DPhil Research Training and Support Grant, the Balliol College Alfred Douglas Stone Scholarship, and the University of Oxford Clarendon Fund. S.K. was funded by a CRUK/MRC Oxford Institute of Radiation Oncology CRUK studentship.Peer reviewedPublisher PD

    Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients

    Get PDF
    ACKNOWLEDGEMENTS We thank Mrs Pat Bain for her assistance in creating Fig. 1. Funding Information: AEK’s salary is funded by Friends of ANCHOR and the University of Aberdeen Development Trust. CKT’s DPhil was funded by the Clarendon Fund, Balliol College, Oxford and Cancer Research UK. JK’s summer research project was funded by a Royal College of Radiologists’ Summer Undergraduate Research Fellowship. The authors received no specific funding for this work.Peer reviewedPublisher PD

    The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes

    Get PDF
    MicroRNAs (miRNAs) are involved in post-transcriptional regulation of gene expression through binding to messenger RNAs (mRNA) thereby promoting mRNA degradation or altered translation. A single-nucleotide polymorphism (SNP) located within a miRNA-binding site could thus alter mRNA translation and influence cancer risk and treatment response. The common SNPs located within the 3â€Č-untranslated regions of 20 DNA repair genes were analysed for putative miRNA-binding sites using bioinformatics algorithms, calculating the difference in Gibbs free binding energy (ΔΔG) for each wild-type versus variant allele. Seven SNPs were selected to be genotyped in germ line DNAs both from a bladder cancer case–control series (752 cases and 704 controls) and 202 muscle-invasive bladder cancer radiotherapy cases. The PARP-1 SNP rs8679 was also genotyped in a breast cancer case–control series (257 cases and 512 controls). Without adjustment for multiple testing, multivariate analysis demonstrated an association with increased bladder cancer risk with PARP1 rs8679 (Ptrend = 0.05) while variant homozygotes of PARP1 rs8679 were also noted to have an increased breast cancer risk (P = 0.03). In the radiotherapy cases, carriers of the RAD51 rs7180135 minor allele had improved cancer-specific survival (hazard ratio 0.52, 95% confidence interval 0.31–0.87, P = 0.01). This is the first report of associations between DNA repair gene miRNA-binding site SNPs with bladder and breast cancer risk and radiotherapy outcomes. If validated, these findings may give further insight into the biology of bladder carcinogenesis, allow testing of the RAD51 SNP as a potential predictive biomarker and also reveal potential targets for new cancer treatments

    Functional assays to determine the significance of two common XPC 3'UTR variants found in bladder cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>XPC </it>is involved in the nucleotide excision repair of DNA damaged by carcinogens known to cause bladder cancer. Individuals homozygous for the variant allele of <it>XPC </it>c.1496C > T (p.Ala499Val) were shown in a large pooled analysis to have an increased bladder cancer risk, and we found two 3'UTR variants, *611T > A and c.*618A > G, to be in strong linkage disequilibrium with c.1496T. Here we determined if these two 3'UTR variants can affect mRNA stability and assessed the impact of all three variants on mRNA and protein expression.</p> <p>Methods</p> <p><it>In vitro </it>mRNA stability assays were performed and mRNA and protein expression measured both in plasmid-based assays and in lymphocytes and lymphoblastoid cell lines from bladder and breast cancer patients.</p> <p>Results</p> <p>The two 3'UTR variants were associated with reduced protein and mRNA expression in plasmid-based assays, suggesting an effect on mRNA stability and/or transcription/translation. A near-significant reduction in XPC protein expression (p = 0.058) was detected in lymphoblastoid cell lines homozygous for these alleles but no differences in mRNA stability in these lines was found or in mRNA or protein levels in lymphocytes heterozygous for these alleles.</p> <p>Conclusion</p> <p>The two 3'UTR variants may be the variants underlying the association of c.1496C > T and bladder cancer risk acting via a mechanism modulating protein expression.</p

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
    • 

    corecore