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Summary
The class I histone deacety-
lase inhibitor romidepsin
sensitizes bladder cancer
cells to ionizing radiation
(IR) and delays tumor
growth after IR. Treatment
with romidepsin þ IR did
not increase the normal tis-
sue toxicity caused by radi-
ation to the surrounding
normal bowel incorporated
in the radiation field acutely
at 3.75 days after radiation or
later at 29 weeks. Romidep-
sin treatment impaired both
homologous recombination
and nonhomologous end
joining DNA repair
pathways.
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Purpose: Muscle-invasive bladder cancer has a 40% to 60% 5-year survival rate with
radical treatment by surgical removal of the bladder or radiation therapyebased
bladder preservation techniques, including concurrent chemoradiation. Elderly
patients cannot tolerate current chemoradiation therapy regimens and often receive
only radiation therapy, which is less effective. We urgently need effective chemo-
therapy agents for use with radiation therapy combinations that are nontoxic to normal
tissues and tolerated by elderly patients.
Methods and Materials: We have identified histone deacetylase (HDAC) inhibitors as
promising agents to study. Pan-HDAC inhibition, using panobinostat, is a good strat-
egy for radiosensitization, but more selective agents may be more useful radiosensiti-
zers in a clinical setting, resulting in fewer systemic side effects. Herein, we study the
HDAC class I-selective agent romidepsin, which we predict to have fewer off-target
effects than panobinostat while maintaining an effective level of tumor radiosensitiza-
tion.
Results: In vitro effects of romidepsin were assessed by clonogenic assay and showed
that romidepsin was effective in the nanomolar range in different bladder cancer
cells and radiosensitized these cells. The radiosensitizing effect of romidepsin was
confirmed in vivo using superficial xenografts. The drug/irradiation combination treat-
ment resulted in significant tumor growth delay but did not increase the severity of
acute (3.75 days) intestinal normal tissue toxicity or late toxicity at 29 weeks.
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Moreover, we showed that romidepsin treatment impaired both homologous recombi-
nation and nonhomologous end joining DNA repair pathways, suggesting that the
disruption of DNA repair pathways caused by romidepsin is a key mechanism for
its radiosensitizing effect in bladder cancer cells.
Conclusions: This study demonstrates that romidepsin is an effective radiosensitizer
in vitro and in vivo and does not increase the acute and late toxicity after ionizing
radiation. Romidepsin is already in clinical use for the cutaneous T-cell lymphoma,
but a phase 1 clinical trial of romidepsin as a radiosensitizer could be considered in
muscle-invasive bladder cancer. � 2020 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).
Introduction

Bladder cancer is the ninth most frequent malignancy and
the 13th most common cause of death, worldwide. Bladder
cancer is a highly prevalent disease and is associated with
substantial morbidity, mortality, and cost.1 Approximately
70% of bladder tumors are nonmuscle invasive bladder
cancers, and the rest are muscle-invasive bladder cancers
(MIBCs). MIBC presents an unfavorable patient prognosis
with a 5-year survival rate of <50%. The treatments
available for MIBC are radical cystectomy, often preceded
by neoadjuvant chemotherapy,2 or radiation therapyebased
bladder preservation techniques, including concurrent
radiosensitizing chemotherapy.3 Elderly patients cannot
tolerate current chemoradiation therapy regimens and
receive radiation therapy only, which is less effective.4-6

Therefore, an urgent need exists to find new radio-
sensitizers that are less toxic to normal tissues for this
elderly patient population.

The high expression levels of histone deacetylases
(HDACs) observed particularly in high-grade urothelial
bladder cancer clearly warrant subsequent studies on the
potential use of HDAC inhibitors (HDACi) as a novel
therapeutic approach.7-9 HDACi exhibit low toxicity to
normal cells,10 and we found the pan-HDACi panobinostat
to be promising as a radiosensitizer in vitro10 and in vivo.11

Although pan-HDAC inhibition is a promising strategy for
radiosensitization, more selective agents may have superior
efficacy with fewer adverse effects. The class I selective
HDACi romidepsin has not yet been used in bladder cancer
but is approved by the U.S. Food and Drug Administration
for the treatment of cutaneous T-cell lymphoma.12 Class I
HDACs are known to be associated with an overexpression
in urothelial cancer compared with normal urothelium7;
thus, we hypothesized that romidepsin alone could have
fewer off-target effects than panobinostat while maintain-
ing an effective level of radiosensitization.

In this study, we demonstrate that treatment with romi-
depsin results in radiosensitization of bladder cancer cells
in vitro and in vivo without showing any exacerbation of
acute or late toxicity in the intestines and the bladder.
Moreover, romidepsin treatment impaired both homologous
recombination (HR) and nonhomologous end joining
(NHEJ) DNA repair pathways, suggesting a key mechanism
for its effects of radiosensitization in bladder cancer cells.

Methods and Materials

All animal work was done in accordance with United
Kingdom Home Office Guidelines, per the Animal
Research: Reporting of In Vivo Experiments guidelines,
and approved by the University of Oxford Animal Welfare
and Ethical Review Body under University of Oxford
project licenses P4B738A3B and P8484EDAE. Group sizes
were chosen to detect large effect sizes by using a G-Power
analysis program. All mice were purchased from Charles
Rivers UK Ltd.

Cell lines, drugs, and irradiator

All cell lines were obtained from the American Type Culture
Collection. RT112, MBT2, and HT1376 cells were grown in
RPMI-1640 medium (Sigma), supplemented with 10% fetal
bovine serum (Invitrogen). DR-GFP U2OS cells were kindly
provided by Dr Sovan Sarkar of the University of Oxford;
cells were grown in Dulbecco’s modified eagle medium and
supplemented with 10% fetal bovine serum. All cell lines
were tested for mycoplasma and found to be negative.

Romidepsin was purchased from Stratech Scientific Ltd
(S3020-SEL; Cambridge, United Kingdom) and used in 5%
DMSO and dH2O. DMSO was purchased from Sigma-
Aldrich (D2650; Gillingham, United Kingdom).

Cells were irradiated in complete medium at a dose rate
of 1.5 Gy/min using the Gamma-Service Medical GmbH
GSR D1 irradiator.

Colony formation assay

Cells were seeded in 5 cm dishes at appropriate densities in
triplicate, treated with DMSO or romidepsin at appropriate
concentrations for 24 hours, and irradiated with 0, 2, 4, 6,
and 8 Gy. Cells were cultured for 10 to 12 days, and col-
onies were counted as described in the supplementary data.
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Xenograft model for growth delay and survival
studies

RT112 cells were prepared in phenol red-free Matrigel
(BD Biosciences) and phosphate-buffered saline 1:1; 100 mL
(5� 106 cells) was injected into the flank of 6- to 7-week-old
female CD1-nude mice. Mice were randomized in Excel
(Microsoft) using RAND function into 4 groups: vehicle
(5% DMSO in dH2O), romidepsin (4 mg/kg, single dose,
intraperitoneally), IR (using a Gulmay-320 cabinet, 6 Gy,
single dose), and romidepsinþ IR (6 hours after romidepsin
treatment). They received the corresponding treatment
when the tumors reached 50 mm3. Tumors were measured
3-dimensionally 3 times a week with a manual calipers,
and tumor volume was calculated using the formula
(width � length � height � [p/6]). Mice were sacrificed
when the tumors reached the limit size of 350 mm3.

Normal tissue response models

Acute toxicity
The acute toxicity was assessed as described in Methods E1
(available online at https://doi.org/10.1016/j.ijrobp.2020.01.
015).

Long-term toxicity
The long-term toxicity was assessed as described in
Methods E1 (available online at https://doi.org/10.1016/j.
ijrobp.2020.01.015).

Crypt assay
The crypt assay was performed as described in Methods E1
(available online at https://doi.org/10.1016/j.ijrobp.2020.
01.015).

Western blots
Western blot samples were prepared as previously
described.13 Protein visualization was performed using the
following antibodies: H3K18Ac (Cell Signaling Technol-
ogy, #9675), Phospho-Histone H2A.X Ser139 (Millipore,
#2739172), and bActin (Abcam, #A1978), and an infrared
LiCor Odyssey imaging system (LiCor Biosciences). All
Western blots were performed twice independently.

Homologous recombination assays
To measure HR efficiency, 8 � 105 U2OS DR-GFP cells
were seeded in 6-well plates. Cells were treated with
siLuciferase or siRAD51 for 48 hours and then transfected
with 4 mg of I-SceI plasmid using Lipofectamine 3000 per
the manufacturer’s instructions (Invitrogen) for 24 hours.
Subsequently, romidepsin or vehicle was added for 24
hours. Cells were recovered in a fresh complete medium for
at least 24 hours and GFP-positive cells were determined
using BD FACS DIVA software. The data were then
normalized to the I-SceI positive control and analyzed
using FlowJo V10. Statistical significance was determined
using a one-way analysis of variance (ANOVA). All
experiments were conducted in duplicate across 3 technical
replicates.

Nonhomologous end joining assays
U2OS NHEJ reporter cells were seeded in 6-well plates. The
following day, cells were treated with DMSO, romidepsin
(25 nM for 24 hours), or DNPA-PK inhibitor NU77441 (2
mM for 2 hours) and transfected with 5 mg of I-SceI plasmid
(for at least 8 hours) using Lipofectamine 3000 per the
manufacturer’s instructions (Invitrogen). Cells were recov-
ered after treatment in completemedium for at least 24 hours,
and GFP-positive cells were quantified using BD FACS
DIVA software. The data were normalized to I-SceI positive
control and analyzed using FlowJo V10. All experiments
were conducted in triplicate across 2 technical replicates.

Statistical analysis

All statistical analyses were performed using GraphPad
Prism 8 software unless specified otherwise. All data are
representative of 3 independent experiments unless other-
wise stated, with results represented as mean and standard
error of the mean. A 2-way ANOVA with Dunnett’s mul-
tiple comparison test was used to analyze the linear
quadratic survival curves in clonogenic assays. A 1-way
ANOVA with Dunnett’s multiple comparison test was used
to compare the tumor growth in CD1-nude mice. The
Kaplan-Meier method was used to present the time to
quadruple volume in tumors, and statistical significance
(P < .05) was determined using the Mantel-Cox test.

Results

Romidepsin increases the histone acetylation level
and causes cytotoxicity and radiosensitivity in
bladder cancer cell lines

Western blotting was performed to confirm that romidepsin
resulted in histone acetylation in the RT112 bladder cancer
cell line. Results showed that treatment with romidepsin
acetylated histone H3 in a concentration-dependent manner
(Fig. 1B).

The cytotoxicity of romidepsin was evaluated in RT112,
MBT2, and HT1376 bladder cancer cell lines after treatment
with increasing concentrations of romidepsin for 24 hours,
and clonogenic survival was assessed. Romidepsin was
effective in the nanomolar range in all bladder cancer cells
(Fig. 1C). Survival curves were used to determine for each
cell lines the IC10 (RT112: 2.5 nM; MBT2: 0.6 nM;
HT1376: 0.4 nM) and the IC50 (RT112: 5nM; MBT2: 2nM;
HT1376: 0.6nM). Subsequently, we investigated romidepsin
as a radiosensitizer in RT112, MBT2, and HT1376 cells
treated with ionizing radiation (IR), either in combination
with romidepsin IC10 and IC50, or alone. Compared with
control cells, romidepsin-treated cells were more radiosen-
sitive, as shown by reduced clonogenic survival (Fig. 1D).
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Fig. 1. Romidepsin increases the level of histone 3 acetylation and causes cytotoxicity and radiosensitivity in bladder cancer
cell lines. (A) Chemical structure of romidepsin; (B) dose-dependency analysis by Western blot of histone 3 acetylation level in
RT112 cells. Equal loading is shown by b-actin; (C) survival curves of RT112, MBT2, and HT1376 cells after 24 hours of
treatment with indicated concentrations of romidepsin to determine IC10 (RT112: 2.5 nM; MBT2: 0.6 nM; HT1376: 0.4 nM) and
IC50 (RT112: 5 nM; MBT2: 2 nM; and HT1376: 0.6 nM). (D) Linear quadratic survival curves of RT112, MBT2, and HT1376
cells treated with ionizing radiation either in combination with romidepsin IC10 and IC50 or alone. Graphs represent 3 biological
repeats over 3 technical replicates. All error bars represent � standard error of the mean. Abbreviation: NS Z not significant.
*P < .05; **P < .01; ***P < .001.
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Romidepsin increases growth delay in irradiated
bladder cancer cell xenografts

After establishing that romidepsin acts as a radiosensitizer
in bladder cancer cell lines, we used an in vivo bladder
cancer superficial xenograft model to confirm this effect.
We first determined the maximum tolerated dose by
injecting romidepsin intraperitoneally 2 or 3 times per week
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intraperitoneal injection of romidepsin at 4 mg/kg and radia-
tion therapy (6 Gy, single fraction) showed significant tumor
growth inhibition (PZ .0002) compared with the control, IR-
only, or drug-only groups (Fig. 2B). No significant difference
was found between the control and IR- or drug-only groups.
The time to quadruple tumor volume in the combined group
was significantly different from the control, IR-only, or drug-
only groups (17 � 4.5 days vs 7 � 1.5 days; P < .0001;
Fig. 2C). TheKaplan-Meier curve for time to quadruple tumor
volume was significantly prolonged in the romidepsin þ IR
group compared with all other groups (P Z .007; Fig. 2D).

Romidepsin does not increase acute intestinal
toxicity after ionizing radiation

The effects of adding intraperitoneal romidepsin on acute
radiation intestinal toxicity were tested in CD1-nude mice
using a modified crypt assay, with irradiation to the lower
abdomen only.11 No loss of small intestinal crypts was
observed in mice treated with vehicle or drug alone (number
of crypts per mm for mock: 18.7 � 0.66 [n Z 3];
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Romidepsin does not increase long-term intestinal
and bladder toxicity after ionizing radiation

Late radiation therapy complications can have a long-term
impact on patients’ quality of life,14 whereas acute effects
are usually time limited. We therefore assessed the poten-
tial late effects of romidepsin þ IR compared with IR alone
using a previously developed method.11 No significant
difference was observed in body weight between IR and
romidepsin þ IR (Fig. E2A; available online at https://doi.
org/10.1016/j.ijrobp.2020.01.015).

There was no significant difference in mean weight of
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Fig. 5. (A) Histone 3 acetylation and g-H2AX level in
RT112 cells treated with 5 Gy ionizing radiation either in
combination with romidepsin or alone. (B) I-Sce1 assay for
romidepsin (n Z 3) and (C) nonhomologous end joining
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available online at https://doi.org/10.1016/j.ijrobp.2020.01.
015). Moreover, no significant difference was observed in
fecal pellet length (Fig. S2B). A quantitative analysis of
urinary voiding patterns showed no significant difference
between the groups (Fig. 4B; Fig. E2C, available online at
https://doi.org/10.1016/j.ijrobp.2020.01.015).

Romidepsin impairs repair of DNA double-strand
breaks after ionizing radiation

Ionizing radiation results in double-strand breaks (DSBs),
which lead to the activation of the early DNA damage
response.15 Impaired repair of DNA DSBs could be
involved in the radiosensitivity in tumor cells after romi-
depsin treatment, as we already showed after panobinostat
treatment.11,16 We assessed this response by measuring the
level of phosphorylated H2AX (gamma-H2AX) in RT112
cells after 5 Gy IR � romidepsin treatment. The results
showed an increasing level of gamma-H2AX in control
cells treated with dimethyl sulfoxide (DMSO) and in cells
treated with romidepsin. However, the level was higher in
romidepsin-treated cells than in control cells (Fig. 5A).
Moreover, gamma-H2AX was still detected 4 hours after
irradiation in romidepsin-treated cells but not in control
cells, suggesting that DSBs are not repaired and accu-
mulate with time in RT112 cells with romidepsin
treatment.

The effects of romidepsin on the repair of IR-induced
DSBs by HR and NHEJ were analyzed with direct repeat
green fluorescent protein (DR-GFP) and EJ5-GFP reporter
assays.17 We found that romidepsin treatment significantly
decreased the percentage of GFP-positive cells in U2OS/
DR-GFP cells after expression of I-SceI compared with
cells without romidepsin treatment (Fig. 5B; P Z .004).
The same effect was observed in U2OS/EJ5-GFP cells
(Fig. 5C; P < .05).
Discussion

Muscle-invasive bladder cancer is therapeutically chal-
lenging, and there is an urgent need to find new effective
chemotherapy agents for use with radiation therapy com-
binations that are less toxic to normal tissue and better
tolerated by elderly patients.

Over the last decade, HDAC have emerged as important
cancer therapeutic targets. High tumor expression levels are
observed in high-grade urothelial bladder cancer.7 HDACi
are epigenetic drugs that can modify histones and nonhis-
tone proteins18 and are suitable for use as anticancer ther-
apy19 because they have already shown promising effects in
preclinical studies.11,19-22 Several HDACi (ie, vorinostat,
assay for romidepsin (n Z 2). All error bars represent �
standard error of the mean. *P < .05; ***P < .001;
****P < .0001.

https://doi.org/10.1016/j.ijrobp.2020.01.015
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mocetinostat, belinostat) have been studied in clinical tri-
als of urothelial bladder cancer.23 However, despite the
clinical benefits of vorinostat, a pan-HDACi, it is reported
to have serious adverse effects. Mocetinostat, class I and
IV, is also compromised by severe toxicities.24 We previ-
ously published that IR þ panobinostat delayed bladder
tumor growth but did not increase acute and late normal
tissue toxicity; however, panobinostat is a pan-HDACi.11

Thus, finding a more specific HDACi with a lesser
extent of normal tissue toxicity in combination with ra-
diation therapy might be better for patients. The HDACi
romidepsin is a structurally unique, potent, bicyclic class I
selective HDACi25 that could be an effective radio-
sensitizer with fewer systemic side effects than pan-HDAC
inhibition.

In the present study, we have shown that romidepsin in
combination with IR decreased the clonogenic survival
of a panel of human bladder tumor cell lines and ach-
ieved tumor growth delay over radiation therapy alone.
Most significantly, treatment with romidepsin þ IR did
not increase normal tissue toxicity caused by radiation to
the surrounding normal bowel incorporated in the radi-
ation field, either acutely at 3.75 days after radiation
using a small intestinal crypt assay or later at 29 weeks
based on functional bowel and bladder assays. Of note,
romidepsin radiosensitizes bladder cancer in nanomolar
concentrations, whereas mocetinostat, TMP195,11 and
SAHA26 do so at micromolar levels. Romidepsin is
already in clinical use for cutaneous T-cell lymphoma,
but a phase 1 clinical trial of romidepsin as a radio-
sensitizer could be considered in muscle-invasive
bladder cancer.

In addition, this study revealed that romidepsin treat-
ment increased the level of gamma-H2AX protein
immediately after IR, and this was still detectable 4 hours
after IR compared with the control cells, suggesting that
DSBs were not repaired and accumulated over time after
romidepsin treatment. The enhanced tumor radiation
response after treatment with HDACi, could be due to the
modulation of DNA damage signaling and repair by
HDACi.27-30 Mammalian cells are widely known to rely
mainly on the HR and NHEJ mechanisms to repair DNA
DSBs.31-33
Conclusions

We showed that romidepsin treatment impaired both HR
and NHEJ DNA repair pathways, supporting evidence in
the literature that HDACi may radiosensitize by partly
suppressing DNA repair pathways.34-36 The demonstration
of impaired repair by both NHEJ and HR caused by
romidepsin raises the possibility that romidepsin may
regulate proteins or processes common to both pathways.
Further investigation of the molecular basis for these effects
will shed light on the role of romidepsin in DNA repair
pathways.
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