5 research outputs found

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link

    Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics

    No full text
    Abstract: Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15 min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77 ± 0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α = 0.87 ± 0.06) and to the random metronome (DFA α = 0.61 ± 0.10) (both p &lt; .05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon

    TOI-1431b/MASCARA-5b: A Highly Irradiated Ultra-Hot Jupiter Orbiting One of the Hottest & Brightest Known Exoplanet Host Stars

    Get PDF
    Accepted for publication in the Astronomical Journal. 39 pages, 18 figures, and 4 tablesWe present the discovery of a highly irradiated and moderately inflated ultra-hot Jupiter, TOI-1431b/MASCARA-5b (HD 201033b), first detected by NASA's Transiting Exoplanet Survey Satellite mission (TESS) and the Multi-site All-Sky CAmeRA (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K=294.1±1.1K=294.1\pm1.1 m s1^{-1}. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of Mp=3.12±0.18M_{p}=3.12\pm0.18 MJ\rm{M_J} (990±60990\pm60 M_{\oplus}), an inflated radius of Rp=1.49±0.05R_{p}=1.49\pm0.05 RJ\rm{R_J} (16.7±0.616.7\pm0.6 R_{\oplus}), and an orbital period of P=2.650237±0.000003P=2.650237\pm0.000003 d. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V=8.049\mathrm{V}=8.049 mag) and young (0.290.19+0.320.29^{+0.32}_{-0.19} Gyr) Am type star with Teff=7690250+400T_{\rm eff}=7690^{+400}_{-250} K\rm{K}, resulting in a highly irradiated planet with an incident flux of F=7.240.64+0.68×\langle F \rangle=7.24^{+0.68}_{-0.64}\times109^9 erg s1^{-1} cm2^{-2} (5300470+500S5300^{+500}_{-470}\mathrm{S_{\oplus}}) and an equilibrium temperature of Teq=2370±70T_{eq}=2370\pm70 K. TESS photometry also reveals a secondary eclipse with a depth of 1275+4127^{+4}_{-5}ppm as well as the full phase curve of the planet's thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as Tday=3004±64T_\mathrm{day}=3004\pm64 K and Tnight=2583±63T_\mathrm{night}=2583\pm63 K, the second hottest measured nightside temperature. The planet's low day/night temperature contrast (\sim420 K) suggests very efficient heat transport between the dayside and nightside hemispheres
    corecore