242 research outputs found

    Mitochondrial lipidome and genome alterations in mouse brain and experimental brain tumors

    Get PDF
    Thesis advisor: Thomas N. SeyfriedMitochondria are the key regulators of the bioenergetic state of the cell. Damage to mitochondrial protein, DNA, or membrane lipids can result as the cause or affect of disease pathology. Regardless, this damage can impair mitochondrial function resulting in a decreased ability to produce ATP to support cellular viability. This thesis research examined the mitochondrial lipidome by shotgun lipidomics in different populations of C57BL/6J (B6) brain mitochondria (non-synaptic and synaptic) and correlated lipid changes to differences in electron transport chain (ETC) activities. Furthermore, a comparison was made for non-synaptic mitochondria between the B6 and the VM mouse strain. The VM strain has a 1.5% incidence of spontaneous brain tumors, which is 210 fold greater than the B6 strain. I determined that differences in the brain mitochondrial lipidome existed in the VM strain compared to the B6 strain, likely corresponding to an increased rate of spontaneous brain tumor formation. Analysis of the mitochondrial genome in the CT-2A, EPEN, VM-NM1, and VM-M3 brain tumors compared to their syngeneic controls mouse strains, C57BL/6J (B6) and VM mice, was examined to determine if mutations existed in experimental brain cancer models. No pathogenic mtDNA mutations were discovered that would likely cause a decrease in the mitochondrial functionality. A novel hypothesis was devised to examine the tumor mitochondrial lipidome to determine if quantitative or molecular species differences existed that could potentially alter the functionality of the ETC. Brain tumor mitochondria were examined from tumors grown in vivo as well as in vitro. Numerous lipid differences were found in the mitochondria of brain tumors, of which the most interesting involved the unique molecular speciation of cardiolipin. ETC activities were significantly decreased in the primary ETC complexes which contribute protons to the gradient as well as the linked complexes of brain tumor mitochondria compared to controls. Taken together, it is likely that differences in the mitochondrial lipidome of brain tumors results in severe impairment of the mitochondria’s ability to produce ATP through the ETC. This research has provided a new understanding of the role of mitochondrial lipids in brain as well as brain cancer and offers an alternative explanation for metabolic dysfunction in cancer.Thesis (PhD) — Boston College, 2008.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Biology

    Tacrine and its analogues impair mitochondrial function and bioenergetics : a lipidomic analysis in rat brain

    Get PDF
    Tacrine is an acetylcholinesterase inhibitor used as cognitive enhancer in Alzheimer's disease treatment. However, the low therapeutic efficiency and the high incidence of side effects have limited its clinical use. In the present study, the molecular mechanisms underlying the brain activity of tacrine and two novel tacrine analogues (T1, T2) were approached focusing on three aspects: i) effects on brain cholinesterase activity; ii) perturbations on electron transport chain enzymes activities of non-synaptic brain mitochondria; iii) the role of mitochondrial lipidome changes induced by these compounds on the mitochondrial bioenergetics. The brain effects were evaluated 18 hours after a single dose (75.6 moles/Kg) administration of tacrine or tacrine-analogues. The three compounds promoted a significant reduction of brain acetylcholinesterase and butyrylcholinesterase activities. Additionally, tacrine showed to be more efficient in brain acetylcholinesterase inhibition than T2 tacrine-analogue and less active than T1 tacrine-analogue, while the butyrylcholinesterase inhibition follows the order: T1 > T2 > tacrine. The studies with nonsynaptic brain mitochondria show that all the compounds studied disturbed the brain mitochondrial bioenergetics mainly by inhibition of complex I activity. Furthermore, the activity of complex IV is also affected by tacrine and T1 treatments while FoF1ATPase is only affected by tacrine. Therefore, the compounds toxicity to the brain mitochondria, that follow the order: tacrine >> T1 > T2, does not correlate with their ability to inhibit brain cholinesterase enzymes. Lipidomics approaches show that phosphatidylethanolamine is the most abundant phospholipid class in non-synaptic brain mitochondria and cardiolipin present greater diversity of molecular species. Tacrine induced significant perturbations in mitochondrial phospholipid profile detected by changes in relative abundance of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and cardiolipin and by the presence of oxidized phosphatidylserines. Additionally, in both T1 and T2 groups, the lipid content and molecular composition of brain mitochondria phospholipids are perturbed in less extent than in the tacrine group. The abnormalities in cardiolipin content and the amount of oxidized phosphatidylserines were associated with significant reductions in mitochondrial enzymes activities, mainly complex I. These results indicate that tacrine and its analogues impair the mitochondrial function and bioenergetics, compromising the activity of brain cells.Foundation for Science and Technology (FCT), FEDER and COMPET

    The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

    Get PDF
    BACKGROUND: Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal(®), a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG). METHODS: Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal(® )was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal(® )on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. RESULTS: KetoCal(® )administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal(® )diet reduced plasma glucose levels while elevating plasma ketone body (β-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal(® )groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, β-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the tumors than in the contralateral normal brain suggesting that these brain tumors have reduced ability to metabolize ketone bodies for energy. CONCLUSION: The results indicate that KetoCal(® )has anti-tumor and anti-angiogenic effects in experimental mouse and human brain tumors when administered in restricted amounts. The therapeutic effect of KetoCal(® )for brain cancer management was due largely to the reduction of total caloric content, which reduces circulating glucose required for rapid tumor growth. A dependency on glucose for energy together with defects in ketone body metabolism largely account for why the brain tumors grow minimally on either a ketogenic-restricted diet or on a standard-restricted diet. Genes for ketone body metabolism should be useful for screening brain tumors that could be targeted with calorically restricted high fat/low carbohydrate ketogenic diets. This preclinical study indicates that restricted KetoCal(® )is a safe and effective diet therapy and should be considered as an alternative therapeutic option for malignant brain cancer

    Retrospective unbiased plasma lipidomic of progressive multiple sclerosis patients-identifies lipids discriminating those with faster clinical deterioration.

    Get PDF
    The disease course of patients with a confirmed diagnosis of primary progressive multiple sclerosis (PPMS) is uncertain. In an attempt to identify potential signaling pathways involved in the evolution of the disease, we conducted an exploratory unbiased lipidomic analysis of plasma from non‑diseased controls (n = 8) and patients with primary progressive MS (PPMS, n = 19) and either a rapid (PPMS‑P, n = 9) or slow (PPMS‑NP, n = 10) disease course based on worsening disability and/or MRI‑visible appearance of new T2 lesions over a one‑year‑assessment. Partial least squares‑discriminant analysis of the MS/MSALL lipidomic dataset, identified lipids driving the clustering of the groups. Among these lipids, sphingomyelin‑d18:1/14:0 and mono‑hexosylceramide‑d18:1/20:0 were differentially abundant in the plasma of ppMS patients compared to controls and their levels correlated with MRI signs of disease progression. Lyso‑phosphatidic acid‑18:2 (LPA‑18:2) was the only lipid with significantly lower abundance in PPMS patients with a rapidly deteriorating disease course, and its levels inversely correlated with the severity of the neurological deficit. Decreased levels of LPA‑18:2 were detected in patients with more rapid disease progression, regardless of therapy and these findings were validated in an independent cohort of secondary progressive (SPMS) patients, but not in a third cohorts of relapsing–remitting (RRMS) patients. Collectively, our analysis suggests that sphingomyelin‑d18:1/14:0, mono‑hexosylceramide‑d18:1/20:0, and LPA‑18:2 may represent important targets for future studies aimed at understanding disease progression in MS

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course.

    Get PDF
    abstract Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect ofBMI on the epigenome ofmono- cytesand diseasecourseinMS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR)MS patientswith high and normal BMI received clin- ical andMRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-naĂŻve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models ofMS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation ofcell proliferationwere detected in the high BMI group ofMSpatients compared to normal BMI. Cer- amide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group ofMS patients showed a negative correlation be- tween monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models ofMS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes

    High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Get PDF
    Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course

    Get PDF
    Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-na\uefve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. Fund: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society

    Statistical Analysis of the Processes Controlling Choline and Ethanolamine Glycerophospholipid Molecular Species Composition

    Get PDF
    The regulation and maintenance of the cellular lipidome through biosynthetic, remodeling, and catabolic mechanisms are critical for biological homeostasis during development, health and disease. These complex mechanisms control the architectures of lipid molecular species, which have diverse yet highly regulated fatty acid chains at both the sn1 and sn2 positions. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serve as the predominant biophysical scaffolds in membranes, acting as reservoirs for potent lipid signals and regulating numerous enzymatic processes. Here we report the first rigorous computational dissection of the mechanisms influencing PC and PE molecular architectures from high-throughput shotgun lipidomic data. Using novel statistical approaches, we have analyzed multidimensional mass spectrometry-based shotgun lipidomic data from developmental mouse heart and mature mouse heart, lung, brain, and liver tissues. We show that in PC and PE, sn1 and sn2 positions are largely independent, though for low abundance species regulatory processes may interact with both the sn1 and sn2 chain simultaneously, leading to cooperative effects. Chains with similar biochemical properties appear to be remodeled similarly. We also see that sn2 positions are more regulated than sn1, and that PC exhibits stronger cooperative effects than PE. A key aspect of our work is a novel statistically rigorous approach to determine cooperativity based on a modified Fisher's exact test using Markov Chain Monte Carlo sampling. This computational approach provides a novel tool for developing mechanistic insight into lipidomic regulation
    • …
    corecore