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Alterations of mitochondrial metabolism and genomic instability
have been implicated in tumorigenesis in multiple tissues. High-
grade glioma (HGG), one of the most lethal human neoplasms,
displays genetic modifications of Krebs cycle components as well
as electron transport chain (ETC) alterations. Furthermore, the
p53 tumor suppressor, which has emerged as a key regulator
of mitochondrial respiration at the expense of glycolysis, is ge-
netically inactivated in a large proportion of HGG cases. There-
fore, it is becoming evident that genetic modifications can affect
cell metabolism in HGG, however it is currently unclear whether
mitochondrial metabolism alterations could vice versa promote
genomic instability as a mechanism for neoplastic transforma-
tion. Here, we show that in neural progenitor/stem cells (NPCs),
which can act as HGG cell of origin, inhibition of mitochondrial
metabolism leads to p53 genetic inactivation. Impairment of respi-
ration via inhibition of complex I or decreased mitochondrial DNA
copy number leads to p53 genetic loss and a glycolytic switch. p53
genetic inactivation in ETC-impaired neural stem cells is caused
by increased ROS and associated oxidative DNA damage. ETC-
impaired cells display a marked growth advantage in the presence
or absence of oncogenic RAS, and form undifferentiated tumors
when transplanted into the mouse brain. Finally, p53 mutations
correlated with alterations in ETC subunit composition and activity
in primary glioma-initiating neural stem cells. Together, these
findings provide novel insights into the relationship between mi-
tochondria, genomic stability and tumor suppressive control, with
implications for our understanding of brain cancer pathogenesis.

p53 | metabolism | glioma

Introduction

Alterations of mitochondrial metabolism are found in several
cancers (1). This can occur through inactivation of components
of the tricarboxylic acid (TCA) cycle and electron transport
chain (ETC) (1-5). In particular, a substantial proportion of
high-grade gliomas (HGG), display mutations in the isocitrate
dehydrogenase TCA enzymes IDH1 and IDH2. Notably, gliomas
also present mutations in mitochondrial DNA (mtDNA) and
alterations of the ETC, but whether these are early or late
events in cancer pathogenesis remains to be determined (6-14).
Finally p53, which has emerged as an important regulator of
mitochondrial metabolism and cellular redox control (15-17),
is often found mutated or functionally inactivated in HGG. Its
inactivation in neural progenitor/stem cells (NPCs), which act
as HGG cells of origin, contributes to gliomagenesis (18-22).
In particular, deletion of a significant portion of the p53 DNA
binding domain induces the accumulation of cooperative onco-
genic events, thus leading to HGG (21). However, it remains
to be determined whether p53 metabolic functions contribute to
suppression of neoplastic transformation in the nervous system.
Although these studies suggest an involvement of altered mito-
chondria metabolism in brain tumorigenesis, direct evidence of

its role as a cancer driver or contributing factor is missing. More
generally, the role of mitochondrial dysfunction in regulation of
tumor suppressive control remains only partially investigated.

Here, we studied the effect of oxidativemetabolism inhibition
in normal NPCs. Our findings show that inhibition of respiration
via knockdown of the complex I subunitNDUFA10 or by reducing
mtDNA copy number results in p53 genetic loss, via a mecha-
nism involving generation of reactive oxygen species (ROS) and
ROS-mediated oxidative damage. In turn, this causes a glycolytic
switch, a marked growth advantage and tumor formation upon
transplantation in the mouse brain. Overall, this study reveals
that in NPCs the relationship between p53 and mitochondrial
metabolism is bidirectional, with p53 being activator of mitochon-
drial metabolism as well as target for genetic inactivation upon
inhibition of respiratory chain activity.

Results
We studied the effect of oxidative metabolism inhibition in NPCs
derived from the sub-ventricular zone (SVZ), one of the twomain
postnatal neurogenic niches involved in brain tumorigenesis (20,
23). To this end, we inhibited the ETC by knocking down the
ETC complex I component NADH dehydrogenase (ubiquinone)
1 alpha sub-complex, 10 of complex I (NDUFA10) (Suppl. Fig.
1A). shRNA-mediated NDUFA10 knockdown resulted in de-
creased oxygen consumption rate (OCR) both at steady state

Significance

Brain cancer is one of the deadliest human tumors and is char-
acterized by several genetic changes leading to impairment of
tumor suppressive pathways and oncogene activation. These
genetic alterations promote subsequent molecular changes,
including modifications of cellular metabolism, which are be-
lieved to contribute to cancer pathogenesis. Conversely, the
role of metabolic changes in regulation of genomic stability
in brain cancer has not been investigated. Our work shows
that alterations of mitochondrial metabolism promote genetic
loss of the p53 tumor suppressor and transformation via a
mechanism involving reactive oxygen species. Overall, our
findings suggest a causative link between metabolic alter-
ations and loss of tumor suppressive control in the central
nervous system, with implications for our understanding of
brain cancer pathogenesis.
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Fig. 1. Silencing of a complex I component results in metabolic shift
and growth advantage in NPCs(A) OCR in shNDUFA10 NPCs under basal
conditions, following addition of oligomycin (0.1�g ml-1), FCCP (0.4�M), or
rotenone (0.2�M) (Data are represented as mean +/- SEM for n=3; **p<0.01,
***p<0.001); (B) ECAR in scramble and shNDUFA10 transfected NPCs. Lactate
production was measured under basal conditions or after olygomicin treat-
ment; (C) QPCR expression analysis of genes involved in glucose uptake and
metabolism in scrambled and shNDUFA10 NPCs. Results are normalized to�-
actin expression levels (n=3 *p<0.05, **p<0.01, ***p<0.001); (D) Cell growth
of scrambled and shNDUFA10 transduced NPCs, as assessed by INCUCYTETM

Live-Cell Imaging System.

and upon treatment with the complex I inhibitor rotenone and
complex V inhibitor oligomycin (Fig. 1A). Maximal respiration
was also reduced in shNDUFA10 cells (Fig. 1A). Diminished
ETC activity was associated with increased extracellular acidifi-
cation rate (ECAR) and lactate levels (Fig. 1B and Suppl. Fig.
1B). In agreement with their glycolytic metabolism, shNDUFA10
cells displayed increased expression of genes involved in glucose
uptake and metabolism Glut1, Glut3, Pdk1 and LdhA (Fig. 1C).
Finally, acquisition of glycolytic metabolism was associated with
growth advantage (Fig. 1D). Thus, NPCs appears to activate
glycolytic metabolism upon inhibition of ETC activity.

To determine whether these changes could occur also in
another model of mitochondrial dysfunction, we used genetically
modified NPCs, where oxidative phosphorylation is decreased
due to loss of thymidine kinase 2 (TK2), a key component of the
salvage pathway for nucleotide biosynthesis within mitochondria
(24-26). K2 KO animals are ataxic and die by postnatal day 15 due
to defects in multiple tissues (24-26). TK2 deficiency in postmi-
totic cells results in decreased mtDNA synthesis, in turn leading
to diminished expression of mtDNA-encoded ETC components
and impaired ETC (24-26). We isolated NPCs from the SVZ of
WT and KOmice (preparation WT1 and KO1; Suppl. dataset 1).
TK2 KO NPCs showed decreased mtDNA levels (Fig. 2A) and
reduced expression of the mtDNA-encoded complex IV subunit
I (C-IV-I) and the nuclearDNA-encodedC-I NDUFB8 (Fig. 2B).
This in turn led to impaired mitochondrial oxidative capacity, as
measured by detection of OCR (Fig. 2C). Defects in ETC func-

tion were accompanied by increased lactate and ATP levels (Fig.
2D, E). Notably, TK2 KO cells displayed increased expression of
Glut1, Pdk1 and LdhA (Fig. 2F). Short hairpin RNA (shRNA)-
mediated knockdown (KD) of TK2 (Suppl. Fig. 1C) led to similar
metabolic alterations (Suppl. Fig. 1D, E). Analysis of the TK2KO
metabolome revealed clear changes in glycolysis as well as sugar
metabolism and Krebs cycle (Fig. 2G and Suppl. dataset 1). Over-
all, these data together with NDUFA10 knockdown experiments
show that NPCs, unlike postmitotic neurons (25), are able to
activate glycolysis upon inhibition of oxidative metabolism. These
metabolic changes correlated with increased growth properties,
as, when plated at clonal density in non-adherent conditions, KO
NPCs formed larger neurospheres (Fig. 2H). Furthermore, in ad-
herent conditions TK2 KO NPC cultures displayed an increased
number of cells in S phase (Fig. 2I). This phenotype was not
associated with changes in basal apoptosis (Suppl. Fig. 1F).When
switched to differentiating conditions, TK2KO cultures displayed
an increased number of Nestin-positive undifferentiated cells and
generatedmore TuJ1-positive neurons (Suppl. Fig. 2A-C). Finally
when switched back to proliferation media, KO cells proliferated
more readily and formed larger neurospheres (Suppl. Fig. 2D,
E). These data indicate that ETC impairment leads to increased
proliferation and altered differentiation properties in NPCs.

We next investigated the mechanisms underlying the
metabolic switch to glycolysis in ETC-impaired NPCs. As these
phenotypic changes are features of p53-deficient cells (17), we
studied whether ETC-impaired cells displayed alterations of the
p53 pathway., We observed a complete lack of full-length (FL)
p53 expression and the presence of a shorter isoform (△p53)
along with reduced p21 expression (Fig. 3A, Suppl. Fig. 3A and
Table 1) in TK2 KO cells. In agreement with the loss of FL
p53 and decreased p21 levels, KO cells failed to arrest upon
ionizing irradiation (IR; Suppl. Fig. 3B). We sequenced p53
cDNA in search of potential mutations in its coding region and
found a p53 truncation, which was caused by a 44-nucleotide
deletion, which created a premature stop codon (Suppl. Fig. 3C).
Interestingly, C-terminal p53 truncations have been described
in HGG cells (27). We next analyzed two additional TK2 KO
NPC preparations (Suppl. Table 1). KO2 cells carried a missense
mutation in the p53 DNA binding domain (Suppl. Fig. 3C),
which corresponded to codon-281 hotspot mutation found in
human cancers including glioma (http://www-p53.iarc.fr/). In
contrast, KO3 cells carried a silent mutation in codon 75 (Suppl.
Fig. 3C). Interestingly, KO2 and KO3 cells displayed a marked
down-regulation of p16INK4a expression at both mRNA and
protein levels (Suppl. Fig. 3D). p53 mutations were also found in
KO4 and KO5 cell preparations (Suppl. Table 1)., shNDUFA10
NPCs displayed a missense mutation in the p53 DNA binding
domain (hotspot codon 135 in human p53; Suppl. Fig. 3E). In all
cases, KO cell preparations and shNDUFA10 cells were analysed
at passage 5-6 from isolation/infection (Suppl. Table 1). Notably,
we were unable to detect p53 mutations/deletions in WT cells
from four individual cell preparations up to passage 12-14 (Suppl.
Table 1). Overall, our data suggest that inhibition of oxidative
metabolism leads to p53 genetic inactivation in NPCs.

p53 mutational status, not p16INK4a down-regulation, corre-
lated with enhanced proliferative capacity, as KO1 and KO2 cells
displayed a growth advantage overKO3 andWTcells (Fig. 3B and
Suppl. Fig. 3D). KO3 cells grew even slower than WT cells (Fig.
3D). p53 loss-of-function mutations found in ETC-impaired cells
correlated with increased ATP and lactate levels (Suppl. Fig. 3F),
a phenotype observed in NPCs derived from the p53 germline KO
(Fig. 3D-F) as well as in Cre-infected p53flox/flox cells (Suppl. Fig.
4G, H). Furthermore, KO1 and KO2 cells displayed an impaired
G1/S checkpoint upon IR, whereas KO3 cells behaved like wild-
type cells (Suppl. Fig. 4). These data suggest that p53 loss is
responsible for the growth and metabolic phenotypes observed
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Fig. 2. Reduction in mitochondrial copy number leads
to ETC defects, glycolysis induction and growth ad-
vantage(A) Relative quantification of mtDNA levels in
wilde type (WT) and TK2 KO (KO) NPCs using quantita-
tive RT-PCR (QPCR; n=3, ***p<0.001); (B) Levels of ETC
mtDNA-encoded (red) and nuclear-encoded (black)
proteins at steady state using an antibody mix against
OXPHOS complexes. Porin and β�actin are shown as
loading controls for mitochondria and total protein
extracts respectively; (C) OCR in NPCs under basal
conditions. Data are average of 3 independent exper-
iments as mean +/- SEM. NPCs were obtained from
n=3 animals for each genotype; ***p<0.001; Lactate
(D) and relative ATP levels (E) in NPCs. Measurements
were made in triplicate (Data are represented as mean
+/- SEM for n=3; **p<0.01, ***p<0.001); (F) Expression
of the genes Glut1, Pdk1 and LdhA in WT and TK2 KO
NPCs (expressed as levels over WT cells). (G) Heat-map
showing the ratio of the metabolite levels between
KO and WT NPCs, and their statistical significance
of the difference (Welch’s two samples t-test). Cells
shaded in red indicate higher metabolite levels in
KO NPCs with p<0.001. Cells not shaded indicate no
significant difference (p>0.05). The number in each
cells indicates fold changes over WT. (H) Proliferation
of NPCs measured using the neurosphere assay. Neu-
rosphere diameter is increased in re-stimulated KO
NPCs (n=3 **p<0.001, Student’s t-test). Scale bar cor-
responds to å100 µm. (I) Proliferation of NPCs by EdU
labelling (2h) and immunodetection of Ki67. Graph
shows quantification of EdU and Ki67.

uponETC inhibition inNPCs. Indeed, when we reintroducedWT
p53 in KO1 cells, we observed a rescue in p21 expression and
down-regulation of Glut1, Glut3, LdhA and Pdk1 (Fig. 3C, D).

We next investigated the mechanisms underlying p53 loss
upon inhibition of oxidative metabolism. As ETC dysfunction
is known to promote alterations of cellular redox (28, 29) and
ROS can directly cause DNA damage (30, 31), we hypothesized
that ROS could be involved in causing p53 genetic inactivation
in ETC-impaired NPCs. To test this, we analyzed KO cells at
isolation from the SVZ. Indeed, we found that ROS are increased
in KO cells (Fig. 3E), and this is associated with augmented 8-
hydroxy-2′-deoxyguanosine levels, a marker of DNA oxidative
damage (8-OHdG; Fig. 3F). 8-OHdG elevation correlated with
increased γH2AX foci and levels, suggesting induction of double
strand breaks and ensuing DNA damage response activation
(Fig. 3G). KO NPCs also displayed aberrant nuclear morphology
with multi-lobated nuclei and increased number of micronuclei
(Suppl. Fig. 5A). FACS analysis of KO cells also revealed in-
creased hyper-diploid DNA content, an index of chromosomal
abnormalities (Suppl. Fig. 5B). Similar changes in nuclear mor-
phology were obtained when cells were cultured for 6 days in
the presence of oligomycin (Suppl. Fig. 5C). To confirm the in-
volvement ofROS in promotion of genomic instability, we treated
WT and KO NPCs with the ROS scavenger NAC. Indeed, NAC
normalized ROS levels, γH2AX foci number and nuclear mor-
phology (Suppl. Fig. 5D and Fig. 3H). Similarly, normalization of
γH2AX was achieved by culturing KO NPCs in low oxygen (Fig.
3I). Notably, freshly isolated KO cells displayed increased p53
activation, which was ROS-dependent and was associated with

reduced growth (Fig. 3J and Suppl. Fig. 5E). These findings sug-
gest that increased selective pressure to overcome p53-mediated
cell cycle arrest in the presence of mitogenic signals along with
increased ROS-mediated DNA damage represents a potential
mechanism for p53 loss in NPCs. To test this, we cultured KO
cells in low and high O2 from isolation and analyzed oxidative
damage and the p53 status through passaging. While KO NPC
preparations acquired p53 mutations in high O2, we failed to
detect any mutation in low O2 conditions up to passage 8 (Suppl.
Fig. 5F and Suppl. Table 1).

p53 inactivation is predicted to contribute to overcoming
the growth suppressive response to oncogenic activation. Hence,
we analysed the growth properties of WT and KO cells trans-
duced with hRASV12 and control vector viral particles (Fig. 4A).
hRASV12 KO cells displayed higher lactate and ATP levels (Fig.
4B). While oncogenic hRAS did not induce growth arrest in WT
NPCs unlike in fibroblasts, hRASV12 KO cells grew faster in
either the presence or absence of growth factors (Fig. 4C).

As p53 loss has been shown to promote HGG development
in mouse via increased genomic instability (21), we reasoned that
ETC-impaired, p53-deficient cells could become tumorigenic. To
this end, we orthotopically transplanted WT and KO (KO1) cells
into the brain of recipient mice. To allow for identification of
transplanted cells, NPCs were first transduced with IRES-GFP
retroviral particles. None of the mice injected with WT cells
developed brain tumors (0/13). In contrast, KO IRES-GFP cells
were able to form poorly differentiated tumors in transplanted
immune-compromised (1/4) as well as immune-competent (1/5)
mice, which diffusely infiltrated the host brain (Fig. 4D, Suppl.
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Fig. 3. ETC impairment leads to p53 genetic inactivation (A) Western blot showing expression of full length (FL) p53 as well as the delete △p53 form in
WT and TK2 KO (KO) NPCs. p53-/- NPCs were used as negative control. (B) Increased growth properties of KO1, KO2 and p53 KO NPCs as assessed by a High
Definition (HD) imaging system; growth curves representative of 2 independent experiments; (C) Western blot analysis of WT (WT1) and KO (KO1) NPCs
infected with WT-p53-HA GFP or GFP alone (left panel). (D) Representative expression analysis of p21WAF1, Sco2, Tigar, Glut1, Glut3, Pdk1, and LdhA levels
(right panel) upon retroviral expression of exogenous WT-p53. Results are normalized to β-actin expression level. (E) Representative plot of intracellular ROS
levels, as assessed by FACS analysis using the DCFDA dye; (F) Quantification of oxidized DNA marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in WT and KO
NPCs cultured in normoxic condition; (G) Percentage of cells displaying defined number of γH2Ax foci/nuclei (left panel). Immunofluorescence analysis of
phosphorylated histone γH2Ax foci (top right panel) in NPCs. Western blot analysis of γH2Ax levels (bottom right panel). (H) γH2Ax foci quantification in WT
and TK2 KO NPCs with or without the antioxidant N-acetyl cysteine (NAC; 0,1 mM); (I) γH2Ax in three independent preparations (see Table S2) of KO and
matched WT NPCs in high and low O2;. The graph (left) shows the percentage of cells displaying defined number of �H2Ax foci / nuclei. (J) Western blot
analysis of p53 and p21WAF1 (p21) levels at steady state in the presence or absence of NAC. Cells were treated for 7days with NAC before any measurement.

Table 2). Overall, these findings indicate that impairment of mito-
chondrial respiration in neural stem cells can result in inactivation
of the p53 pathway and tumor transformation.

Finally, we investigated whether respiratory chain alterations
correlated with p53 mutations in primary high-grade glioma
(HGG) cells. To this end, we took advantage of a panel of glioma-
initiating neural stem (GNS) cells derived from resected HGG
(G1, G2, G3, G4, G144, G166). These cells represent a subpopu-
lation within the bulk of established tumors bearing neural stem-
like features, which can initiate glioma when transplanted in re-
cipient animals (32). We noticed that a number of lines displayed
enhanced growth properties (G3, G4, G144 and G166; Suppl.
Fig. 6A). Among them, only G3, G144 and G166 also showed
elevated lactate levels and extracellular acidification rate (ECAR;
Suppl. Fig. 6B). These cells carried hotspot mutations in the
p53 DNA binding domain (Suppl. Fig. 6C-D). We then explored
the status of the respiratory chain by using the MitoProfile®

Total OXPHOS antibody cocktail and individual antibodies for
different ETC components (Suppl. Fig. 6E). Interestingly, p53-
mutated cells showed reduced expression of themtDNA-encoded
C-IV subunit I (C-IV-1) and C-IV-2, as well as the nuclear DNA-
encoded C-IV-4 (Suppl. Fig. 6E). We then measured whether
these changes correlated with impaired OCR. Uncoupling the
mitochondria with an optimal concentration of FCCP (3μM)
rapidly increased respiration yielding an OCR value for maximal
O2 consumption in p53-proficient cells, while it was significantly
lower in p53-mutated GNS cells (Suppl. Fig. 6F,G). Consistent
with the decreased expression of C-IV components, we observed
significant impairment of C-IV activity (Suppl. Fig. 6H) using
treatment with antimycinA, which blocks electron flux to complex
III, and a complex IV direct agonist (N,N,N’,N’-tetramethyl-p-
phenylenediamine (TMPD)/ ascorbate). Changes in ETC subunit
levels were not recapitulated by p53 loss alone or concomitant
with expression of p53 mutants in NPCs, suggesting that alter-
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Fig. 4. ETC-impaired cells are susceptible to neoplastic transformation
(A) Western blot analysis of WT and KO (KO1 preparation) NPCs infected
with hRASv12 IRES-GFP or IRES-GFP alone. (B) ATP and lactate production
under basal conditions in WT and KO NPCs transduced with either IRES-GFP
or hRASv12 IRES-GFP retrovirus. (** p<0.01, ***p<0.0001, Student’s t-test,
error bars are s.d.)(C)Growth curves analysis and representative images of
WT and KO cells transduced with control (IRES-GFP) or hRASv12 IRES-GFP
retroviral particles in proliferation (left) and differentiation (right) culture
conditions. (D) Left panel:histological and fluorescence microscopy analysis
of allografts, derived from KO IRES-GFP cells. WT and KO cells were cultured
as neurospheres, trasduced with IRES-GFP and orthotopically allografted into
the caudoputamen of NOD/SCID immunosuppressed mice. No tumours were
obtained in mice in which WT cells were xenografted. H&E histology shows
large, cytoplasm rich cells in KO tumour cells. Anti-GFP immunostaining
was used to identify the tumour-initiating cells (bottom row). Right panel:
immunohistochemical staining for the astrocyte marker GFAP shows that all
tumours are negative with positive cells only in the adjacent host tissue.
Immunohistochemical analysis of the neural stem cell marker Nestin shows a
strong, diffuse labeling of tumor cells. The neural progenitor marker Olig-2
shows that many but not all of tumor cells present strong nuclear expression.
The progenitor cell marker Sox-2 is expressed in a smaller subset of tumor
cells. Scale bar corresponds to 80µm (first row), 320 µm (second row), and
160 µm (remaining panels);

ations in ETC subunit composition may not be downstream to
p53 inactivation (Suppl. Fig. 6I, J) Altogether, these findings
indicate that ETC alterations are associated with p53 mutations
and glycolytic metabolism in GNS cells.

Discussion

This work suggests a role for mitochondrial metabolism in the
regulation of tumor suppressive mechanisms and transformation
in the central nervous system (CNS). In particular, we showed
that respiratory chain dysfunction can lead to p53 genetic inacti-
vation and transformation in NPCs (Suppl. Fig. 7). Furthermore,
in accordance with the reported role of p53 in suppressing trans-
formation of NPCs (18-22), ETC-impaired/p53-deficient NPCs

grow faster upon oncogenic activation and are capable of forming
brain tumors in a subset of orthotopically-transplanted animals.
The incomplete penetrance observed in these experiments may
be due to the fact that other cooperative oncogenic events may
have to be acquired, as previously suggested (21) and indeed these
might be favored by ROS increase as well as by p53 loss. Genome
stability could also be affected via metabolic stress-dependent
inhibition of metabolism-sensitive DNA repair enzymes, such as
PARP (33), or indirectly via iron/sulphur (Fe/S) cluster formation
(34-37) as part of a mitochondrial retrograde signaling.

Our data indicate that selective pressure to overcome ROS-
mediated p53 activation along with increased ROS-mediated
DNA damage contribute to p53 genetic loss in NPCs. Loss of
p53 in turn leads to a metabolic switch and potentially favors
acquisition of other oncogenic mutations to be yet identified. The
importance of the redox state in the mechanism leading to p53
mutation is clearly shown by the fact that by reducing oxygen
levels we were able to block the appearance of p53 mutations
in ETC-impaired NPCs. It is conceivable that ROS originating
from dysfunctional mitochondria synergize with ROS produced
by growth factor signaling, as NPCs are cultured in the presence
of highly mitogenic growth factors. In vivo, elevated ROS levels
within the highly vascular SVZ niche have been proposed to fuel
NPC expansion via growth factor signaling (38, 39). However,
ROS can also lead to respiratory chain dysfunction via ROS-
mediated damage to ETC components and mitochondrial DNA
(mtDNA) (30, 40-42). Respiratory chain inhibition would further
augment ROS generation, thus promoting a vicious circle of
oxidative stress (28, 29, 43). Finally, we observed an associa-
tion between altered ETC composition, dysfunctional respira-
tory chain function and p53 mutations in primary HGG cells.
These findings suggest a novel twist in the relationship between
oxidative metabolism, the p53 tumor suppressive pathway and
cellular redox status in somatic stem cells (Suppl. Fig. 7): while
in normal cells p53 positively regulates oxidative metabolism and
anti-oxidant defenses, inhibition of the respiratory chain can lead
to p53 genetic inactivation via a ROS-dependent mechanism,
eventually contributing to malignant transformation.

Based on the classical model of tumorigenesis, an initial mu-
tation of an oncogene or a tumor suppressor leads to subsequent
molecular changes ultimately resulting in malignant transfor-
mation, including alterations of mitochondrial metabolism. We
propose an additional model, whereby an initial alteration of
oxidative metabolism can lead to increased mutation rate that
eventually results in oncogenic mutations and tumor transfor-
mation. In highly proliferative epithelial tissues, which are more
exposed to environmental factors, the first model would apply
more frequently. In this respect, UV irradiation has recently been
demonstrated to induce accumulation of p53 mutations at high
frequency, thus accelerating BRAF(V600E)-driven melanoma-
genesis (44). In contrast, in progenitor/stem cells within the adult
brain, which are less exposed to environmental insults, the initial
event might be a metabolic defect, such as alterations of mito-
chondrial respiration. In fact, with the exception of exposure to
ionizing radiations a strong correlation between brain tumors
and exposure to environmental carcinogens was never clearly
demonstrated (45, 46). It is important to note that there is lack
of evidence that hereditary diseases carrying mutations in nuclear
DNA and mtDNA-encoded mitochondrial factors, such as TK2,
display increased cancer susceptibility. However, the severity of
phenotypes affecting cells in theses conditions may not provide
an incontrovertible answer to this question. In particular, neu-
rodegeneration phenotypes observed in these hereditary diseases
could have an earlier onset compared to more indolent tumor
phenotypes, thus limiting the value of an epidemiological ap-
proach.

Experimental procedures
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Animals
Germline TK2 knockout (KO) mice that harbor a progressive lost of

mtDNA, were developed by Xiaoshan Z. and colleagues in A. Karlsson’s
laboratory (Karolinska Institute, Stockholm, Sweden) (26).

Mouse neural stem cell culture
Isolation of adult mouse NPCs was performed as previously described.,

Brains were dissected to remove the olfactory bulbs, cerebellum and brain-
stem. An area encompassing the SVZ surrounding the lateral wall of the
forebrain ventricle was dissected. Tissue was dissociated with accutase for
15mins at 37C and mechanically dissociated. Cells were plated onto laminin
pre-coated culture dish in expansion media (RHA-B media supplemented
with 10 ng/mL of both bFGF and EGF. For neurosphere cultures, cells were
plated at clonal density (20 x 103 cells ml-1 and cultured for 7 days in vitro
(DIV). For differentiation analysis, single cells were plated at 2.5 x105 cells
ml-1 on laminin-coated glass coverslips (Ø13 mm) in expansion media, before
the subsequent withdrawal of bFGF and EGF growth factors to facilitate
differentiation over 8 DIV (3 days without EGF followed by 8 days in the
absence of growth factors).

ATP levels and lactate production
Total ATP levels were determined using the CellTiter-Glo® Luminescent

assay as per the manufacture’s instruction (Promega). Lactate was measured
using the Trinity Biotech lactate assay. Data are expressed as mole of
ATP/relative ATP level (%) and mg/dl lactate respectively and all the values
were normalized to cells number.

Metabolic profiling
Metabolic profiles were obtained for each individual genotype using

the Metabolon Platform (Metabolon Inc. NC, USA), as described in (47). Each
sample consisted of 6 Sample preparation (5 for WT cells) was conducted

using a proprietary series of organic and aqueous extractions to remove
the protein fraction while allowing maximum recovery of small molecules.
The resulting extract was divided into two fractions; one for analysis by LC
and one for analysis by GC. Samples were placed briefly on a TurboVap®
(Zymark) to remove the organic solvent. Samples were then frozen, vacuum
dried and then prepared for either LC/MS or GC/MS. Compounds above
the detection threshold were identified by comparison to library entries of
purified standards or recurrent unknown entities. Identification of known
chemical entities was based on comparison to metabolomic library entries of
purified standards.

Acknowledgements.
We thank Salvador Moncada (UCL, UK), Doug Turnbull, Robert Taylor

(University of Newcastle, UK), Andrea Cossarizza (University of Modena and
Reggio Emilia, Italy), Doug Green (St Jude Childrens Hospital, Memphis,
USA), Sarah Ann-Martin (Barts Cancer Institute, London, UK), Steven Pollard
(Edinburgh University), Pablo Rodriguez-Viciana and Asim Khwaja (UCL,
UK) for reagents, support and critical discussion. Finally, we thank the UCL
Scientific Services, the CAGE facility and the UCL Biological Services Unit. In PS
lab, this work was supported by Medical Research Council, The Brain Tumour
Charity (through a generous donation from the Brian Cross family) and by a
donation from David Hunter and Wendy Tansey in memory of Peter Clark.
SB and NH received support from UCLH CBRC and the Brain Tumour Charity.
SB (IoN) acknowledges the Neurosurgical team at the National Hospital for
their continued support of the brain tumor bank. VG was recipient of travel
fellowships from Boehringer Ingelheim (2010) and EMBO (2011). This work
was also in part supported by AIRC IG 11450 and Ministero Sanità Ricerca
Finalizzata (2009) to VDL.

1. Frezza C & Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Semin
Cancer Biol 19(1):4-11.

2. Amary MF, et al. (2011) IDH1 and IDH2 mutations are frequent events in central chon-
drosarcoma and central and periosteal chondromas but not in other mesenchymal tumours.
J Pathol 224(3):334-343.

3. Prensner JR & Chinnaiyan AM (2011) Metabolism unhinged: IDH mutations in cancer. Nat
Med 17(3):291-293.

4. Reitman ZJ, et al. (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations
on the cellular metabolome. Proc Natl Acad Sci U S A 108(8):3270-3275.

5. Cairns RA & Mak TW (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms,
models, and clinical opportunities. Cancer discovery 3(7):730-741.

6. DeHaan C, et al. (2004) Mutation in mitochondrial complex I ND6 subunit is associated with
defective response to hypoxia in human glioma cells. Mol Cancer 3:19.

7. Kirches E, et al. (2001)High frequency ofmitochondrialDNAmutations in glioblastomamul-
tiforme identified by direct sequence comparison to blood samples. Int J Cancer 93(4):534-
538.

8. Larman TC, et al. (2012) Spectrum of somatic mitochondrial mutations in five cancers. Proc
Natl Acad Sci U S A 109(35):14087-14091.

9. Lueth M, et al. (2009) Somatic mitochondrial mutations in pilocytic astrocytoma. Cancer
Genet Cytogenet 192(1):30-35.

10. Marin-Valencia I, et al. (2012) Analysis of tumor metabolism reveals mitochondrial glucose
oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab
15(6):827-837.

11. Oliva CR, et al. (2010) Acquisition of temozolomide chemoresistance in gliomas leads to
remodeling of mitochondrial electron transport chain. J Biol Chem 285(51):39759-39767.

12. Vega A, et al. (2004) mtDNA mutations in tumors of the central nervous system reflect the
neutral evolution of mtDNA in populations. Oncogene 23(6):1314-1320.

13. Kiebish MA, Han X, Cheng H, & Seyfried TN (2009) In vitro growth environment produces
lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic
astrocytes and brain tumours. ASN Neuro 1(3).

14. Zhou Y, et al. (2011) Metabolic alterations in highly tumorigenic glioblastoma cells: prefer-
ence for hypoxia and high dependency on glycolysis. J Biol Chem 286(37):32843-32853.

15. Jones RG & Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for
cancer growth. Genes Dev 23(5):537-548.

16. Lane D & Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold
Spring Harb Perspect Biol 2(12):a000893.

17. Muller PA & Vousden KH (2013) p53 mutations in cancer. Nature cell biology 15(1):2-8.
18. Alcantara Llaguno S, et al. (2009) Malignant astrocytomas originate from neural

stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15(1):45-56.
19. Chow LM, et al. (2011) Cooperativity within and among Pten, p53, and Rb pathways induces

high-grade astrocytoma in adult brain. Cancer Cell 19(3):305-316.
20. Jacques TS, et al. (2010) Combinations of genetic mutations in the adult neural stem cell

compartment determine brain tumour phenotypes. EMBO J 29(1):222-235.
21. Wang Y, et al. (2009) Expression of mutant p53 proteins implicates a lineage relationship

between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell
15(6):514-526.

22. Zheng H, et al. (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal
and differentiation. Nature 455(7216):1129-1133.

23. Llaguno SA, Chen J, Kwon CH, & Parada LF (2008) Neural and cancer stem cells in
tumor suppressor mouse models of malignant astrocytoma. Cold Spring Harbor symposia on
quantitative biology 73:421-426.

24. Akman HO, et al. (2008) Thymidine kinase 2 (H126N) knockin mice show the essential role
of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Hum Mol Genet
17(16):2433-2440.

25. Bartesaghi S, et al. (2010) Loss of thymidine kinase 2 alters neuronal bioenergetics and leads
to neurodegeneration. Hum Mol Genet 19(9):1669-1677.

26. Zhou X, et al. (2008) Progressive loss of mitochondrial DNA in thymidine kinase 2-deficient
mice. Hum Mol Genet 17(15):2329-2335.

27. Kim EL, et al. (2005) Comparative assessment of the functional p53 status in glioma cells.
Anticancer research 25(1A):213-224.

28. Li N, et al. (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through
enhancingmitochondrial reactive oxygen species production. J Biol Chem 278(10):8516-8525.

29. Muller FL, Liu Y, & Van Remmen H (2004) Complex III releases superoxide to both sides
of the inner mitochondrial membrane. J Biol Chem 279(47):49064-49073.

30. Ziech D, Franco R, Pappa A, & Panayiotidis MI (2011) Reactive oxygen species (ROS)--
induced genetic and epigenetic alterations in human carcinogenesis. Mutation research 711(1-
2):167-173.

31. Sedelnikova OA, et al. (2010) Role of oxidatively induced DNA lesions in human pathogen-
esis. Mutation research 704(1-3):152-159.

32. Pollard SM, et al. (2009) Glioma stem cell lines expanded in adherent culture have tumor-
specific phenotypes and are suitable for chemical and genetic screens.Cell Stem Cell 4(6):568-
580.

33. Luo X & Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-
ribose) and PARP-1. Genes Dev 26(5):417-432.

34. Stehling O, Elsasser HP, Bruckel B, Muhlenhoff U, & Lill R (2004) Iron-sulfur protein
maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 13(23):3007-
3015.

35. ThierbachR, et al. (2012) Specific alterations of carbohydratemetabolism are associated with
hepatocarcinogenesis in mitochondrially impaired mice. Hum Mol Genet 21(3):656-663.

36. Thierbach R, et al. (2005) Targeted disruption of hepatic frataxin expression causes impaired
mitochondrial function, decreased life span and tumor growth in mice. Hum Mol Genet
14(24):3857-3864.

37. Veatch JR,McMurrayMA, Nelson ZW,&Gottschling DE (2009)Mitochondrial dysfunction
leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137(7):1247-1258.

38. Le Belle JE, et al. (2011) Proliferative neural stem cells have high endogenous ROS levels
that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell
8(1):59-71.

39. Ottone C, et al. (2014) Direct cell-cell contact with the vascular niche maintains quiescent
neural stem cells. Nature cell biology 16(11):1045-1056.

40. Kowaltowski AJ & Vercesi AE (1999) Mitochondrial damage induced by conditions of
oxidative stress. Free Radic Biol Med 26(3-4):463-471.

41. Moncada S & Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy
generation and apoptosis? Nat Rev Mol Cell Biol 3(3):214-220.

42. Choksi KB, Boylston WH, Rabek JP, Widger WR, & Papaconstantinou J (2004) Oxidatively
damaged proteins of heartmitochondrial electron transport complexes.Biochim Biophys Acta
1688(2):95-101.

43. Wallace DC (2005) Amitochondrial paradigm of metabolic and degenerative diseases, aging,
and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359-407.

44. Viros A, et al. (2014) Ultraviolet radiation accelerates BRAF-driven melanomagenesis by
targeting TP53. Nature 511(7510):478-482.

45. Schwartzbaum JA, Fisher JL, Aldape KD, &WrenschM (2006) Epidemiology andmolecular
pathology of glioma.Nature clinical practice. Neurology 2(9):494-503; quiz 491 p following 516.

46. OstromQT, et al. (2014) The epidemiology of glioma in adults: a "state of the science" review.
Neuro-oncology.

47. Tufi R, et al. (2014) Enhancing nucleotide metabolism protects against mitochondrial dys-
function and neurodegeneration in a PINK1 model of Parkinson's disease. Nature cell biology
16(2):157-166.

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

6 www.pnas.org --- --- Footline Author

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816



Please review all the figures in this paginated PDF and check if the
      figure size is appropriate to allow reading of the text in the figure.

      If readability needs to be improved then resize the figure again in
      'Figure sizing' interface of Article Sizing Tool.


