169 research outputs found

    Optimization of the epoxidation of methyl ester of palm fatty acid distillate

    Get PDF
    Methyl ester of palm fatty acid distillate (PFAD-ME) can be used for producing epoxide compounds. PFADME consists of 39.3% of oleic acid (C18:1) and has an iodine value of 49.2 g I2/100 g. It can be converted to a low oxirane content epoxide which can be used for several applications, such as plasticizers, polyols or alkanolamines, with appropriate modification. Temperature, mole ratio of hydrogen peroxide to unsaturation, and mole ratio of formic acid to unsaturation were optimized in the epoxidation of PFAD-ME. The study showed that more than 98% conversion of unsaturation to the epoxide ring moiety can be achieved within 3 hr of reaction by using the optimum molar ratio of 1:1:4 (unsaturation: formic acid: hydrogen peroxide) and a temperature of 50°C

    A Cell-Based Small Molecule Screening Method for Identifying Inhibitors of Epithelial-Mesenchymal Transition in Carcinoma

    Get PDF
    Epithelial Mesenchymal Transition (EMT) is a crucial mechanism for carcinoma progression, as it provides routes for in situ carcinoma cells to dissociate and become motile, leading to localized invasion and metastatic spread. Targeting EMT therefore represents an important therapeutic strategy for cancer treatment. The discovery of oncogene addiction in sustaining tumor growth has led to the rapid development of targeted therapeutics. Whilst initially optimized as anti-proliferative agents, it is likely that some of these compounds may inhibit EMT initiation or sustenance, since EMT is also modulated by similar signaling pathways that these compounds were designed to target. We have developed a novel screening assay that can lead to the identification of compounds that can inhibit EMT initiated by growth factor signaling. This assay is designed as a high-content screening assay where both cell growth and cell migration can be analyzed simultaneously via time-course imaging in multi-well plates. Using this assay, we have validated several compounds as viable EMT inhibitors. In particular, we have identified compounds targeting ALK5, MEK, and SRC as potent inhibitors that can interfere with EGF, HGF, and IGF-1 induced EMT signaling. Overall, this EMT screening method provides a foundation for improving the therapeutic value of recently developed compounds in advanced stage carcinoma

    Theory and Validation of Magnetic Resonance Fluid Motion Estimation Using Intensity Flow Data

    Get PDF
    15 p.Background Motion tracking based on spatial-temporal radio-frequency signals from the pixel representation of magnetic resonance (MR) imaging of a non-stationary fluid is able to provide two dimensional vector field maps. This supports the underlying fundamentals of magnetic resonance fluid motion estimation and generates a new methodology for flow measurement that is based on registration of nuclear signals from moving hydrogen nuclei in fluid. However, there is a need to validate the computational aspect of the approach by using velocity flow field data that we will assume as the true reference information or ground truth. Methodology/Principal Findings In this study, we create flow vectors based on an ideal analytical vortex, and generate artificial signal-motion image data to verify our computational approach. The analytical and computed flow fields are compared to provide an error estimate of our methodology. The comparison shows that the fluid motion estimation approach using simulated MR data is accurate and robust enough for flow field mapping. To verify our methodology, we have tested the computational configuration on magnetic resonance images of cardiac blood and proved that the theory of magnetic resonance fluid motion estimation can be applicable practically. Conclusions/Significance The results of this work will allow us to progress further in the investigation of fluid motion prediction based on imaging modalities that do not require velocity encoding. This article describes a novel theory of motion estimation based on magnetic resonating blood, which may be directly applied to cardiac flow imaging.Kelvin Kian Loong Wong, Richard Malcolm Kelso, Stephen Grant Worthley, Prashanthan Sanders, Jagannath Mazumdar, Derek Abbot

    Graded Smad2/3 Activation Is Converted Directly into Levels of Target Gene Expression in Embryonic Stem Cells

    Get PDF
    The Transforming Growth Factor (TGF) β signalling family includes morphogens, such as Nodal and Activin, with important functions in vertebrate development. The concentration of the morphogen is critical for fate decisions in the responding cells. Smad2 and Smad3 are effectors of the Nodal/Activin branch of TGFβ signalling: they are activated by receptors, enter the nucleus and directly transcribe target genes. However, there have been no studies correlating levels of Smad2/3 activation with expression patterns of endogenous target genes in a developmental context over time. We used mouse Embryonic Stem (ES) cells to create a system whereby levels of activated Smad2/3 can be manipulated by an inducible constitutively active receptor (Alk4*) and an inhibitor (SB-431542) that blocks specifically Smad2/3 activation. The transcriptional responses were analysed by microarrays at different time points during activation and repression. We identified several genes that follow faithfully and reproducibly the Smad2/3 activation profile. Twenty-seven of these were novel and expressed in the early embryo downstream of Smad2/3 signalling. As they responded to Smad2/3 activation in the absence of protein synthesis, they were considered direct. These immediate responsive genes included negative intracellular feedback factors, like SnoN and I-Smad7, which inhibit the transcriptional activity of Smad2/3. However, their activation did not lead to subsequent repression of target genes over time, suggesting that this type of feedback is inefficient in ES cells or it is counteracted by mechanisms such as ubiquitin-mediated degradation by Arkadia. Here we present an ES cell system along with a database containing the expression profile of thousands of genes downstream of Smad2/3 activation patterns, in the presence or absence of protein synthesis. Furthermore, we identify primary target genes that follow proportionately and with high sensitivity changes in Smad2/3 levels over 15–30 hours. The above system and resource provide tools to study morphogen function in development

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate.

    Get PDF
    R-2-hydroxyglutarate accumulates to millimolar levels in cancer cells with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both metabolite enantiomers, R- and S-2-hydroxyglutarate, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that 2-hydroxyglutarate accumulates in mouse CD8+ T cells in response to T-cell receptor triggering, and accumulates to millimolar levels in physiological oxygen conditions through a hypoxia-inducible factor 1-alpha (HIF-1α)-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8+ T-cell differentiation in response to this metabolite. Modulation of histone and DNA demethylation, as well as HIF-1α stability, mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8+ T cells. Thus, S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, through a metabolic-epigenetic axis, to immune fate and function
    corecore