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Over the past decade, there has been explosive growth in the availability of multimedia data,
particularly image, video, and music. Because of this, content-based music retrieval has attracted
attention from the multimedia database and information retrieval communities. Content-based
music retrieval requires us to be able to automatically identify particular characteristics of music
data. One such characteristic, useful in a range of applications, is the identification of the singer in
a musical piece. Unfortunately, existing approaches to this problem suffer from either low accuracy
or poor scalability. In this article, we propose a novel scheme, called Hybrid Singer Identifier (HSI),
for efficient automated singer recognition. HSI uses multiple low-level features extracted from
both vocal and nonvocal music segments to enhance the identification process; it achieves this via
a hybrid architecture that builds profiles of individual singer characteristics based on statistical
mixture models. An extensive experimental study on a large music database demonstrates the
superiority of our method over state-of-the-art approaches in terms of effectiveness, efficiency,
scalability, and robustness.
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1. INTRODUCTION

With the continued advances in data storage and communication technology,
there has been an explosive growth in the volume of music data stored in dig-
ital form. Consequently, there has been increasing interest in the multimedia
database and information systems communities [Lam and Tan 2001; Easley
et al. 2003; Pachet 2003; Pardo 2006; Pinto and Haus 2007] to study techniques
for content-based music retrieval. Many techniques have recently been devel-
oped to support automatic classification or recognition of music based on in-
strument, genre, and other characteristics [Li et al. 2003; Liu and Huang 2002;
Zhang 2003; Li and Ogihara 2004]. In particular, techniques for automatic artist
identification are gaining in importance due to potential applications such as
music indexing and retrieval, copyright management, and music recommen-
dation systems. The development of singer identification techniques enables
the effective management and exploration of large music collections based on
“singer similarity.” With this technology, songs performed by a particular singer
can be automatically clustered for easy management or searching.

Currently, the most popular and naive approach to support singer identifica-
tion is to manually embed artist information into the music database with the
assistance of music professionals. In this case, traditional text retrieval tech-
niques can be directly applied for music querying. The obvious shortcoming of
the approach is that it requires a significant amount of time and domain exper-
tise to label each music item. Note that, while many formats of music data have
embedded artist information, we cannot rely on the existence of such data (for
example, if a snippet of music is recorded from the radio and we wish to find
the performer). It is clear that songs performed by the same singer share cer-
tain audio characteristics; the singer’s voice most likely contains similar audio
patterns over all the songs they perform. Also, artists tend to perform within
a single genre, and thus the audio characteristics of their work may contain
common features (e.g., instrumentation). This suggests the feasibility of singer
identification based on audio content.

By automatic singer identification, we refer to the task of determining, for a
given song, which singer among S candidate artists performed it. The essential



part of this process is an S-class categorization. The effectiveness of solutions
to this problem relies heavily on their ability to capture salient information for
separating one signal from others. While traditional speech recognition tech-
niques [Rabiner and Juang 1993; Becchetti et al. 1999] could be easily applied
to this task, they are likely not to perform well. This is because the vocal track
is intertwined with the nonstationary background signal from the backing in-
struments. It is rare that we might acquire a pure solo voice track without
instrumentation (unless we had access to the original multitrack data for the
song). Furthermore, there is a semantic gap between low-level acoustic features
and high-level notions such as music genre. Superior query accuracy cannot be
expected without using well-discriminating low-level features to distinguish
the songs of one artist from those of another.

Several approaches have been recently proposed to apply statistical
models or machine learning techniques for automatic singer classifica-
tion/identification [Liu and Huang 2002; Zhang 2003; Tsai and Wang 2006].
In general, these methods consist of two main steps: singer characteristic mod-
eling based on voice data, and class label identification via machine learning
algorithms. In singer characteristic modeling, acoustic signal information is
extracted to represent the music. Then specific mechanisms (i.e., statistical
models or machine learning algorithms) are constructed to assign songs to one
of the predefined singer categories based on their extracted acoustic features.
Unfortunately, existing attempts at implementing this approach have been un-
able to achieve acceptable classification accuracy. The main reasons are (1) they
focus on a single, nonrepresentative feature (voice data), (2) they do not explore
effective ways of combining multiple features, and (3) they do not take account
of information available in the accompanying music track.

We now expand on the above points in more detail: (1) music consists of a
complex collection of features (beat, timbre, etc.), with vocal features compris-
ing just one of many possible features that might be used for classification.
Employing a single type of feature to represent an artist, as many previous
systems have done, is unlikely to lead to good performance by an identifica-
tion system. Moreover, the acoustic data for an artist’s singing carries more
information than plain speech data. For example, a singer’s unique formant
structure may be reflected in the songs that (s)he sings. Speech features alone
may not always represent such characteristics effectively. (2) No existing work
has addressed the underlying multifeature integration model that can be used
to explore the conjunctive effects among the different acoustic characteristics
for effective singer identification. And (3) most previous work has focused on
vocal features and does not consider the influence of accompanying music.
However, nonvocal components generally carry a large amount of informa-
tion about music style and genre. The styles of song performed by a singer
could be relatively steady during a certain period. This information is poten-
tially useful in assisting to identify songs performed by that artist. Of course,
artists do perform pieces outside their “normal style,” which would be difficult
to recognize if not included in the training data. However, ignoring musical
information altogether does not help improve the accuracy of the identification
process.



Motivated by these concerns, we introduce a novel system, called Hybrid
Singer Identifier (HSI), for effective automated singer recognition in large mu-
sic databases. HSI considers polyphonic music as input and uses a two-layer
structure consisting of a preprocessing module and a singer modeling module.
The main contributions of our approach can be summarized as follows:

—Instead of considering only the singer’s voice, we propose a novel singer iden-
tification framework using multiple features extracted from both vocal and
nonvocal components to improve the system’s effectiveness on singer charac-
teristic modeling.

—A probabilistic singer characteristic modeling method is designed based on
mixture models and a score fusion scheme based on logistic regression to
bridge the “semantic gap.” In addition, distinguished from previous meth-
ods that only rely on single type of low-level acoustic feature, our approach
can effectively integrate multiple kinds of sound information to enhance
the identification process with a hybrid architecture and associated learning
algorithm.

—Most previous studies in the field have focused primarily on improving the ef-
fectiveness of the identification process. While this is clearly a desirable goal,
not enough previous work has also considered the problems of efficiency and
scalability, which are very important issues in a practical system with large
datasets. Our approach achieves both effectiveness and efficiency/scalabilty
by its use of a layered component structure.

—The proposed system has been fully implemented and tested. An extensive
range of tests has been designed to investigate different factors that affect
the performance of the HSI approach and its competitors. The results, based
on a large dataset, demonstrate the superiority of our method over other
state-of-the-art approaches. The tests address a range of factors, including
effectiveness, scalability, efficiency, and robustness against audio distortion
and other kinds of noise.

The remainder of this article is organized as follows: Section 2 gives a brief
overview of related work in the area of singer/artist identification, including the
assumptions and limitations of each. In Section 3, we review our proposed archi-
tecture, giving the detailed structure of its component modules and its learning
algorithms. Section 4 reports our experimental configuration and results. Fi-
nally, we give our conclusions and directions for future work in Section 5.

2. RELATED WORK

Automated singer identification is an important research problem with nu-
merous applications in multimedia information systems. In recent years, there
have been many efforts to develop frameworks for singer/artist identification
and associated topics. While different kinds of data, such as text-based captions,
can be applied for the task, in the following survey, we focus on feature-based
approaches. Among the earliest of such systems, Minnowmatch mainly focuses



on artist rather than singer identification using mel-frequency cepstral coeffi-
cients (MFCCs), which is a feature adapted from the classical speech recogni-
tion and speaker identification mechanisms [Whitman et al. 2001]. The best
identification accuracy achieved on a small dataset, containing a 10-artist set,
was approximately 70%. However, with a larger set of 21 artists, the best case
accuracy dropped to 50%.

In Berenzweig and Ellis [2001], vocal music was used as an input to a speech
recognition system, achieving a success rate of up to 80% in isolating vocal
regions. In Berenzweig et al. [2002], the authors used a neural network trained
on radio recordings to similarly segment songs into vocal and nonvocal regions.
By focusing on voice regions alone, they improved artist identification by 15%.
The system presented here also attempts to perform segmentation of vocal
regions prior to singer identification. After segmentation, the classifier uses
features drawn from voice coding based on Linear Predictive Coding. Kim and
Whitman [2002] developed a scheme to automatically construct the identity of
a singer using acoustic features extracted from the vocal parts of popular music.
The classification experiment was carried out with two different classifiers—
the Gaussian Mixture Model (GMM) and Support Vector Machines (SVMs).
The best accuracy achieved was 45.3% based on a small test set using the
SVMs. In followup work, Kim et al. [2006] studied the “album effect” in singer
identification. In the real world, consistency of audio production techniques is
high in the same album, but could be very different between different albums.
This can have a great impact on singer identification systems. The research
indicates that accuracy can be improved greatly when systems are trained and
tested based on music items from the same album. The main problem for this
study is that the size of the test collection and other detailed information were
not available in the article.

In Liu and Huang [2002], a novel scheme was designed and developed to
automatically classify music objects according to their singers. First, the coef-
ficients extracted from the output of polyphase filters are used to compute the
music features for segmentation. Based on these features, a music object can
be decomposed into a sequence of notes (or phonemes). Then for each phoneme
in the training set, its music feature is extracted and used to train a k-nearest
neighbor classifier which can identify the singer of an unknown input music
object. An approximately 65% identification accuracy was achieved based on a
set of 10 male and 10 female singers.

Zhang [2003] developed a system for automatic singer identification which
recognizes the singer of a song by analyzing the music signal. The proposed
scheme follows the framework of classical speaker identification systems, but
special efforts are made to distinguish the singing voice from the background
instrumental sounds in a song. A statistical model is trained for each singer’s
voice with typical song(s) of the singer. Then, for a song to be identified, the
starting point of the singing voice is detected and a portion of the song is
excerpted from that point. Audio features are extracted and matched with
singers’ voice models in the database. The song is assigned to the model hav-
ing the best match. Accuracy rates of around 80% were achieved in a tiny
database with 45 songs. Meanwhile, in Bartsch and Wakefield [2004], a singer



identification method was developed based on the spectral envelope estimation
using a composite transfer function (CTF), which is calculated from the instan-
taneous amplitude and frequency of the signal’s harmonic partials. Unfortu-
nately, this method only examines a very limited case in which audio samples
only contain the singer’s voice—solo performances of Italian arias, without any
accompaniment. Thus, the technique could be less effective for songs that also
involve instruments. On the other hand, Li and Ogihara [2004] proposed an
artist style identification method using both lyrics and acoustic features via a
semisupervised learning approach. The best identification accuracy achieved
was 78.8%. The corresponding test data set contains 43 artists selected from
56 albums provided by All Music Guide.!

Tsai et al. [Tsai et al. 2003; Tsai and Wang 2006] proposed a solo voice
modeling framework to capture singers’ vocal characteristics. The technique
first separates vocal from nonvocal regions and then models the singers’ vocal
characteristics based on stochastic properties of the background music. The
system is spectrum based and its main weakness is that uses only a single
type of acoustic feature for vocal portions (20-dimensional MFCC features) to
profile different singers. Furthermore, the approach’s scalability is poor. This
is because when new singer information is added to the system, the whole
framework needs to be retrained and the corresponding process could be very
expensive in terms of reconstruction time. Moreover, based on their experiment
on a small dataset which contained 230 popular music songs, the accuracy of
identification achieved was only 71%.

The 2004 ISMIR conference [ISMIR 2004] saw the first major open evalu-
ation of techniques in the MIR domain. Analogous to the TREC series in text
retrieval, the aim was to compare approaches for a range of different tasks
in music information retrieval (MIR). Artist identification was one of the task
tracks, with the specific task being to recognize the performers given three songs
per artist after the system has been trained using seven songs per artist. The
training and development sets contained a total of 105 artists selected from the
USPOP2002 collection [Berenzweig et al. 2004]. For each singer, the training
and development set included seven songs and three songs individually. The
features provided were MFCCs. The evaluation set included about 200 artists,
which were exclusive from the USPOP2002 collection. Based on information
provided by the contest organizers, using all 200 artists to test the algorithm
was impossible due to technical limitations.? Thus, only 30 and 40 artists were
used in the evaluation. The task contest attracted two participants, neither of
which had an accuracy greater than 34%.

Starting in 2005, the annual Music Information Retrieval Evaluation eX-
change (MIREX) activity, organized by IMIRSEL,? has become an important
technical forum for evaluating current research and development in the area
of music retrieval [Downie et al. 2005b; Downie 2006]. Each year, MIREX orga-
nizes a range of music retrieval tasks, and various research groups from around

lyww.allmusic.com.

2http://ismir2004.ismir.net/genre_contest/index.htm.
3International Music Information Retrieval Systems Evaluation Laboratory.



Table I. Summary of Identification Methods’
Accuracy from Artist Identification Track at

MIREX 2005
Methods Magnatune USPOP
ME 76.60% 68.30%
BCE (1) 77.26% 59.88%
BCE (2) 74.45% 58.96%
E. Pampalk 66.36% 56.20%
West and Lamere 55.45% 41.04%
G. Tzanetakis 53.43% 28.64%
B. Logan 37.07% 14.83%

the world submit their systems for benchmarking. The aim is to establish a com-
mon MIR evaluation forum. It provides excellent examples for state-of-the-art
music retrieval, data management, and modeling techniques, and artist/singer
identification is one of main focuses for the evaluation study carried out in this
event. In 2005, eight teams participated in the contest, but only seven teams’
submissions completed the task in the required time. Most systems followed the
same basic approach, consisting of two main steps: acoustic feature extraction
and class label identification via a machine learning algorithm. Two different
music databases have been used in the MIREX evaluations: Magnatune, based
on a collection of 1800 songs* and USPOP, a subset of the USPOP2002 collec-
tion [Berenzweig et al. 2004]. Magnatune provided 1158 training files and 642
testing files, while USPOP provided 1158 training files and 653 testing files.

The results of the seven systems evaluated at MIREX 2005 [MIREX 2005]
are presented in Table I. Two systems were clearly superior to the others: the
system of Bergstra et al. (BCE) and the system of Mandel et al. (ME). The
BCE(1) variation of BCE performed best (77% accuracy) on the Magnatune
data, while ME performed best (68% accuracy) on the USPOP data. The BCE
system considered a large number of frame-based timbre features (RCEPS,
MFCCs, linear predictive coefficients, low-frequency Fourier magnitudes,
Rolloff, linear prediction error, and zero-crossing rate). The mean and variance
of the features were calculated for each frame. The AdaBoost. MH method was
used for boosting decision stumps (BCE(1)) and two-level trees (BCE(2)). The
ME system used an acoustic feature based on 20-dimensional MFCC features
extracted from complete songs. The classifier used by ME was SVMs with a
KL divergence based kernel.

The artist identification task was next held at MIREX 2007 [MIREX 2007].
This time, only five teams participated. The best identification rate (48%) was
achieved by the IMIRSEL M2K system developed for general-music retrieval.
M2K used SVM as the classifier to identify the labels of incoming music objects
[Downie et al. 2005a]. The second best system, developed by Mandel and Ellis,
achieved an accuracy of 47%.

Table II summarizes the properties of previous identification methods. WHI,
LIU, KIM, BA, BER, ZHANG, TSAI, BCE, and ME denote the identification
methods published in Whitman et al. [2001], Liu and Huang [2002], Kim and

4From Magnatune. com.



Table II. Summary of State-of-the-Art Identification Methods’ Properties

Identification | Multifeature Size of Vocal | Nonvocal System
Methods Integration Testbed | Based Based Scalability
WHI No Small No No Poor
LIU No Small No No Poor
KIM No Small Yes No Poor
BA No Small No No Poor
BER No Small Yes No Poor
ZHANG No Small Yes No Poor
TSAI No Small Yes Yes Poor
BCE No Small No No Poor
ME No Small No No Poor

Whitman [2002], Bartsch and Wakefield [2004], Berenzweig et al. [2002], Zhang
[2003], Tsai et al. [2003],Tsai and Wang [2006], MIREX [2005], and MIREX
[2005], respectively. As discussed above, these methods either use a single
type of acoustic feature to represent music objects, or base singer identifica-
tion on a speech-recognition approach. All of them have been tested only on
small datasets, which makes it difficult to estimate their applicability to large
real-life datasets. In addition, none of the above approaches adapts well to the
addition of new classes of data (we call this property scalability). In all cases,
when a new singer was added, the system has to be retrained, leading to high
system reconstruction costs.

3. THE HYBRID SINGER IDENTIFIER (HSI) SYSTEM

In this section, we present the HSI method to facilitate automated singer recog-
nition in large music databases. The architecture of the system, as illustrated in
Figure 1, comprises two major component layers: a preprocessing module and a
statistical singer modeling module. The major functionality of the preprocess-
ing module is to separate an incoming song into vocal and nonvocal segments,
and to extract audio features from those segments. The second layer contains
a collection of statistical models, one for each singer. A statistical model for
one singer consists of a series of Gaussian Mixture Models (GMMs), each con-
structed using one kind of acoustic feature. To identify a song, different feature
vectors are first extracted from the vocal and nonvocal segments. The feature
vectors are then fed into the statistical models, generating a set of likelihood
values. The likelihood values generated by each model are combined, using a
novel fusion scheme based on logistic regression, to form an overall relevance
score. Finally, the query song is assigned to the singer with the highest overall
relevance score. In the following subsections, we will give details of the modules
and algorithms used in the system. The notation used in this article is defined
in Table III.

3.1 Music Preprocessing—Vocal/Nonvocal Segmentation

In the first stage of the HSI identification process, vocal and nonvocal seg-
ments are identified and labeled via the preprocessing module. This process
can be treated as a problem of vocal boundary detection and the detail steps are
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Fig. 1. Architecture of the HSI singer identification system.
Table III. Summary of Symbols and Definitions
| Symbols | Definitions
S Number of singers in the database
s Notation of singer s
T Number of blocks for segmenting input objects
F Number of features extracted
M Number of training examples for logistic fusion function
J Number of mixture components in GMMs
cs Score combination function for singer s
Vb Feature vector extracted from block b for feature type f
Vi Set of feature vectors extracted from different blocks for feature type f
Ls Final score generated by logistic combination function for singer s
? Likelihood value generated by category s’s profile model using feature type f
ws Fusion weight vector of Logistic combination function for singer s

illustrated in Algorithm 1. We use a learning approach based on SVMs whose
inputs are acoustic feature vectors. This approach is effective because there is
a significant difference between the spectral features of segments containing
vocal and instrument data and those containing only instrumental data.

Algorithm 1. Algorithm for preprocessing music.

Input :Songs, Frame Length [
Output : Vocal and non-vocal segments

1. Segment song s into frames with length /;

2. Calculate spectral features for each frame;

3. Classify music frames into two categories, vocal and non-vocal, with SVMs;
4. Return vocal and non-vocal segments;
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Fig. 2. Statistical singer modeling for singer s.

The preprocessing phase is similar to the approach in Lu et al. [2003], and
consists of two subprocesses: feature extraction and classification with SVM.
When a song comes in, it is divided into many short time frames of a predefined
length (line 1). In our implementation, we set the length of frame to 0.5 s as
this yielded the best performance in our experiments. The following acoustic
features are calculated from each frame (line 2): MFCC features, spectral cen-
troid, spectral flux, zero crossings, and low energy. These audio features are
given as input to a SVM, which classifies each frame as containing vocals or
not (line 3). We employ a SVM because it has been demonstrated to be effective
on a range of categorization problems. The basic function of the SVM is that it
can nonlinearly map the input features into a high-dimensional feature space;
then a linear classifier is constructed to use optimal hyper planes to separate
positive patterns and negative patterns with maximum margin. SVM performs
well for binary classification, such as in this task. We have used the LIBSVM
[Chang and Lin 2001] library in our work.

3.2 Multifeature Statistical Singer Modeling

In the second layer of our HSI system, there are multiple singer characteristic
models, one for each singer. Each model is made up of two parts: feature ex-
tractors and multiple mixture models. There are specialized feature extractors
that work on vocal and nonvocal frames. Each feature is fed into a specialized
GMM, and the GMMs for all features are combined to build an overall model
for one singer. The structure of this layer is presented in Figure 2 and we will
describe each component in detail below.

3.2.1 Feature Extraction. To effectively represent the complex musical con-
tent of a specific artist’s song, HSI extracts different features from both the vocal
and nonvocal segments. Four different features are extracted: the vocal timbre
feature (VTF), the vocal pitch feature (VPF), the genre-based feature (GBF),



and the instrument-based feature (IBF).5 The VTF and VPF capture informa-
tion from the vocal segments performed by the singer. The genre-based feature
represents the music style. The instrument feature is used to model the charac-
teristics of a typical instrument configuration for songs performed by the artist.
This is motivated by research studies such as Xu et al. [2005] which indicate
that a similar instrument configuration is found on most of the songs performed
by a given singer. The details of the features used by the HSI framework are
as follows:

—Vocal timbre feature (VTF). This feature conveys the timbre information of
the vocal component. It is particularly important as the voice is a special
instrument generated with flesh and bone and its timbre is unique for each
singer. In this study, we extracted LPCCs (linear prediction-based cepstral co-
efficients) [Rabiner and Schafer 1978] from vocal segments to represent this
information (LPCCs are linear prediction coefficients (LPCs) represented in
the cepstrum domain). The advantage of an LPCC-based feature is that it
provides a more consistent representation of an singer’s vocal tract char-
acteristics; the peaks of the vocal spectrum can be tracked by the envelop
generated from the LPCCs. To compute the feature, HSI uses a FIR filter to
preemphasize the audio input. The LPC analysis is carried out and then a re-
cursion formula is applied to calculate cepstral coefficients based on the LPC
parameters. Those parameters form the final VTF vector. The dimensionality
of this feature vector is 16. In our current implementation, the order of the
LPC analysis is 12.

—Vocal pitch feature (VPF). This feature describes the harmonic and struc-
tural information related to each singer’s voice. The algorithm proposed by
Tolonen and Karjalainen [2000] is used as the feature extractor and used
to model pitch features in songs. The main advantages of this method is
its computational efficiency and its effectiveness in capturing human audi-
tory perception. With this method, the raw signal is first processed with a
bandpass filter, where the lower and upper passband limits can have any val-
ues between 0 and 4500 Hz (the limits of the frequencies achievable by the
human voice). Then, amplitude envelopes are extracted for different frequen-
cies and summed to construct a pitch histogram which is used for describing
prosodic features. We derive an 18-dimensional feature vector consisting of
the amplitude and periods of the maximum six peaks in the histogram, a
pitch interval between the six most prominent peaks, and the overall sums
of the histograms. We use this feature to build the singer’s prosodic model.

—Genre-based feature (GBF). This feature contains music information about
genre. Because artists tend to perform in a limited range of genres (perhaps
just one), this information helps to improve singer identification accuracy.
In this study, genre information was summarized in Daubechies wavelet
coefficient Histograms (DWCHs) [Li et al. 2003]. With DWCHs, local and
global temporal information inside a music signal can be captured at the
same time. To extract DWCHs, a sound file is treated as a kind of oscillation

5Note that our method can be easily extended to consider more acoustic features.



waveform in the time domain and can be considered as a two-dimensional
entity of the amplitude over time, in the form of M (¢) = D(A, ), where A is
the amplitude. It first uses wavelets to decompose the music signal into dif-
ferent subbands. Then, a histogram for each subband is constructed. Finally,
the first three moments of each histogram and energy for each subband are
calculated to form DWCHSs. This is currently the state-of-the-art feature
extraction technique for content-based genre classification. It produces a
40-dimensional feature vector.

—Instrument-based feature (IBF). This feature captures instrument config-
uration information for each song. Recent results on music understanding
show that there is an association between the instrument configuration [Xu
et al. 2005] and the singer (because singers tend to work with a particular
set of backing instruments). Thus, an instrument-based feature ought to be
helpful in enhancing singer identification effectiveness. In this study, MFCC
features were used to represent information about instrument configura-
tion. This is because MFCCs have been widely used to model timbre for
instrument identification [Livshin and Rodet 2004]. To obtain IBF, we apply
the logarithm of the amplitude spectrum based on a short-term Fourier
transform on each signal frame. Then the frequencies are divided into 13 bins
using Mel-frequency scaling. After taking the logarithm of the amplitude
spectrum, the frequency bins are clustered and smoothed according to Mel-
frequency scaling after conducting the logarithm on the amplitude spectrum.
The final features are obtained by decorrelating the Mel-spectral vectors
using a discrete cosine transform (DCT). This produces a 13-dimensional IBF
vector.

3.2.2 Statistical Singer Profiling with Mixture Models. For the purpose
of effective singer identification, HSI constructs a statistical model for each
singer based on multiple features using GMMs. GMMs have recently received
significant attention due to their superior performance for speech identification
[Rabiner and Juang 1993]. In principle, a GMM combines the benefits of both
the parametric and nonparametric density models. Like a parametric model,
it employs a trainable model that does not require all the training data to
make a classification. On the other hand, like a nonparametric model, GMMs
have sufficiently high degrees of freedom to approximate any distribution with
arbitrary accuracy, without expensive computation and storage demands. In
addition, one of the main advantages of GMMs is that they are fast in terms of
computational and training speed.

In our framework, the individual features of the music signal are extracted,
and then individual profiling models for one singer are built up based on
each feature.® The statistical singer profiling module of HSI aims to capture
statistical properties of different features with finite mixture models. The
probability of a singer label s can be modeled as a random variable drawn
from a probability distribution for a certain feature type f. Given a parameter

61n this study, since four different features were extracted, the number of profiling models for each
singer was four.



set ©F estimated based on feature f, it can be presented as a mixture of
multivariate component densities:

P;s‘(Vf|®sf) =t1511[2}11w?jp§c(vtf| Hsfj,zsfj)}, (1D

where V¢ = {v1f,var, ..., U7} is a set of feature vector. Assume that Gaussian
density is used as multivariate component in this study, according to GMM
0% = {w};, 1%, Esfj| where 1 < j < J}, where Wi, W and Esfj denote
mixture weights, mean vectors, and covariance matrices, respectively. Also,
Py (ir| p%;, %;) is the probability of a singer label s based on feature f
extracted from segment ¢. Given data v;r, it can be easily calculated using
Gaussian density function and associated parameters w5 > sf e

The learning examples used to train GMMs are randomly selected from the
original datasets and cover all subclasses. After the training process, we can
obtain a set of model parameters for each class’s GMMs and the likelihood value
generated, based on feature type f for input feature vector V¢, can be given as

T J
j =oa(2pvr100) = s (| Eupmptesiiy |)
t= j=

and we can derive an overall likelihood value based on the features for singer
s, expressed as

L = Co (15, w$), 3)

where w?® is the combination weight and C* is likelihood value combination
function. L® can be used to quantify the universal similarity distance between
an input song and a singer label s.

3.2.3 Model Selection in the Statistical Singer Profiling Module. In HSI,
the well-known Expectation Maximization (EM) algorithm is used to determine
a set of model parameters. EM is a widely used standard algorithm for param-
eter estimation in statistics which uses an iterative hill-climbing procedure to
drive the process of estimation. The goal is to derive an optimal parameter set

% via a maximum likelihood estimation:

(%) = argmax P}({V/107). @
7
In the first step, ®% is initialized with random values. Then, the value of the
parameter set is reestimated in each iteration of the EM algorithm according
to the following two steps: the Expectation step (E step) and the Maximization
step (M step). The new model % is obtained with the auxiliary function in the
E step:

|

— J —
Q{ey; 0%} = _lesfjpjc(ﬂvtf@;) log p% (J, vir1©%) ¢ (5)
J=

t=1

where
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and

wY,; pj (vt | ;5 35 )
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For the M step, we update the parameter using the following estimation:

wa— ZZP jlver, ©%), (8)
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XL (o, ©% vy )

o , )
i Zt:l Zj:lpf(J|vtf’ "f)
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fi =
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The updating procedure is repeated until the log-likelihood value is increased
by less than a predefined threshold from one iteration to the next. Since HSI
considers four different features, the overall training procedure will be repeated
four times, once for each feature.

3.3 Fusion Weight Estimation via Learning

To develop the statistical singer model for each singer in HSI, a logistic func-
tion is used as a combination function C® to derive an overall likelihood
score. Logistic functions have been widely used in the statistical and ma-
chine learning community and play an important role in one of the most
popular statistical algorithms—Ilogistic regression (LR) [Blum 1990; Jordan
1995; Vapnik 1998; Hastie et al. 2001]. The main reason for using LR to es-
timate parameters is that few statistical assumptions are required for its use
and relatively it reqiures a low computational cost in terms of training. In
addition, the output of logistic functions can be mapped into a probabilis-
tic output in [0,1]. With logistic functions, Equation (3) can be reformulated
as

1
1 + exp(—ys 21;21 w5 jc)’

where y; = 1 if this input object belongs to singer s, ys = —1 otherwise, and
wy is the weight for singer s’s likelihood value generated based on feature f.
F' is the size of input score and equals the number of features extracted in the
first layer. L® denotes the overall relevancy score—conditional probability of
singer s. Based on Equation (11), the likelihood value occurring in the learning
samples is

L = C (15, wh) = (11)

M

1
I1 — (12)
m:l1 + exp(—ys Zf:lwf f)



Algorithm 2. Logistic regression based training algorithm to determine weights of score
fusion for singer s.

Input: Matrix MA € [-1, 11"*F where MA,.; = ynl}
N, is number of the positive training examples
N, is number of the negative training examples

Output: Weight vector Ws = (w3, ws....,wy)

1. Ws =(0,0,...,0) and go = (0.5,0.5, ..., 0.5);

2.fort=1,2.... do

Qi+1,m = Qt,m exp(— Zlle ‘St,fMAMf);

foreach positive training example do

q _ qut,m .

tm = N+N,’
for each negative training example do

_ Npatm .

qt,m - N"+Np ’

NO oew

8. Ji = arg}rcnax ‘Z%zl Qe mMAf |

9. =N qnMAu

10. 2t = leleI Qt,m;

1 .
11. a; = iln(%),

a; if j=fi
12. 8 = .
&f {O otherwise;

13. update with W}H = Wf + 63

14. Return Ws = (w5, w5, .... .wh};

where M is the number of training examples. It is easy to see that the goal
of the training process is to maximize the overall likelihood value. Thus, the
goal is to “learn” W* to minimize the log loss of the model, and the associated
function can be denoted as

M F
> in (1 + exp (—ys > w z;)). (13)

m=1 f=1

To achieve this, we apply a modified version of the sequential-update opti-
mization algorithm proposed by Collins et al. [2000].” The pseudocode for our
algorithm is given in Algorithm 2. The algorithm is equivalent to the AdaBoost
scheme [Freund and Schapire 1997; Lebanon and Lafferty 2001]. The basic
principle is that, on each iteration ¢ during the training, the algorithm updates
the distribution g ,, to increase the weights of misclassified training examples
(lines 14-15). In our implementation, the algorithm counts the distribution
between positive and negative learning examples. We revise the algorithm to
give q; ,, weight (lines 4-9). The distribution weights can be computed with

ndt,m

N, .. Npq:, .
Qm = N5H, for positive examples and g; »,, = g 1\';; for negative examples.

"For a detailed derivation, please refer to Collins et al. [2000].



Algorithm 3. Algorithm for automatic singer identification.

Input :A song with unknown singer s

Output : Singer label of the song

1. Process the song to get vocal and non-vocal segments;

2. Feature extraction;

3. Derive relevance scores using statistical singer profiling module;
4. Return singer label with Equation 14;

3.4 ldentification Process with HSI

The goal of the HSI is to identify the singer of a song presented only as audio
data (i.e., no metadata annotations). We now describe the entire process, using
the architecture introduced previously. We start with a training database where
we know the singers of all songs in the database. In the training stage, we pro-
cess the songs in the database, and extract features for each singer. According
to the characteristics of the singers, we generate the parameters for the mul-
tifeature statistical modeling module. Then, we use Algorithm 2 to determine
the fusion weights for combining the scores.

After the training phase, we can conduct the task of singer identification.
The basic procedure is shown in Algorithm 3 and consists of four steps. For a
given music item, at the initial stage of the process, the system partitions the
song into vocal and non-vocal segments (line 1). After that, the feature extrac-
tion procedure generates four different kinds of features using the techniques
described in Section 3.2.1. Next, the features are fed into the statistical mod-
ules for individual singers in the second layer of the HSI. The likelihood score
based on a particular feature can be generated based on Equation (2). Then,
relevance scores, one from each singer statistical model, can be calculated with
Equation (11) (line 3). Those scores quantify the similarity between the incom-
ing song and the singer label. In the final step, a singer’s label for the song can
be assigned based on those relevance scores.

s* = argmax L°. (14)

1>s>8

3.5 Major Advantages of HSI

The HSI architecture presented in the previous sections enjoys several advan-
tages over the other competing approaches:

—Comprehensiveness. In our singer characteristic model, several kinds of fea-
tures, extracted from both vocal and nonvocal segment, are taken into con-
sideration. The combination of those features enables us to summarize the
music content from each artist more precisely.

—Effectiveness. The multifeature statistical singer characteristic model, in con-
junction with the probabilistic likelihood fusion scheme with logistic function,
enables us to capture effects of different features more effectively. Conse-
quently this improves the final retrieval/query accuracy and robustness of



the whole framework. The experimental results further verify that the sys-
tem with the decision model scheme is more robust against training flaws
and raw training example problems.

—Scalability. The statistical singer characteristic model for each artist is con-
structed independently. Thus, the whole system does not need to be rebuilt
when music items performed by new singers are integrated into the database.
Therefore, the system naturally has superior scalability over other schemes.
Moreover, there is significant potential for parallelism in the identification
process.

—Efficiency. Another advantage of HSI is its simplicity. This characteristic di-
rectly leads to faster identification of singer labels. In addition, the layering
architecture leads to a great saving on process and maintenance cost. Fur-
thermore, the approach is relatively easy to implement.

In next section, we will demonstrate those advantages empirically. Certainly,
the advantages of this approach need to be balanced against the potential prob-
lem of mis-labelling. As our experimental results show, HSI is more robust
against this problem compared to other approaches.

4. AN EXPERIMENTAL STUDY

This section presents an experimental study to evaluate the proposed HSI tech-
nique. First, we give the experimental configuration including test datasets and
the performance metrics to evaluate different methods. Then, we present an ex-
perimental study to examine the performance improvement of HSI over several
existing schemes, namely, TSAI, BER, LIU, BCE, and ME. The results demon-
strate the superiority of HSI over the current best approaches in the areas of
accuracy of singer identification, scalability to accommodate different sizes of
data, robustness against various kinds of noise, and efficiency in terms of the
response time.

4.1 Experimental Configuration

In this section, we present the experimental settings for the performance eval-
uation, including competitive systems, testing datasets, and performance met-
rics. All methods have been implemented and tested on a Pentium III, 450-MHz
PC running the Linux operating system [Shen et al. 2006].

4.1.1 Data Sets. We used four datasets for the our experimental study.
Dataset I contained 230 songs from 13 female and 10 male artists with 10
songs per artist. The dataset has been used in Tsai et al. [2003] and Tsai and
Wang [2006]. Dataset II consisted of 8000 songs covering 90 different singers.
This dataset was constructed from a CD collection of the authors. It included
45 male singers (such as Van Morrison, Michael Jackson, Elton John, Michael
Bolton, etc) and 45 female singers (such as Kylie Minogue, Madonna, Jennifer
Lopez, etc). The length of each music item in the two datasets was set as 30 s
and there was no overlap between the two datasets. For both datasets, the
sound files were converted to 22,050-Hz, 16-bit, mono audio files. For singer



identification, we used 20% of each dataset for training purposes and the re-
maining songs to evaluate the performance of all the schemes studied. Datasets
IIT and IV were the Magnatune and USPOP collections used in MIREX 2005
artist identification contest.

4.1.2 Evaluation Metrics. As discussed above, the main goal of the system
is to identify the artist who performs an incoming query song. Thus, our evalua-
tion method focuses on how accurate the identification process is with different
approaches for a particular database. We used the accuracy as the metric for
evaluation:

N¢
A = —, 15
ceuracy = — (15)
where N¢ is the number of songs correctly identified and N is the number of
songs used in the evaluation. We also measured the average response time to
evaluate the efficiency of the different techniques:

Total Query Response Time

N J
where Total Query Response Time is the total time required for the system
to identify all N songs used in the evaluation. It represents the average
time required for identifying a single query song. A lower AvgResponse is

preferred as it implies faster identification process, and hence better query
efficiency.

AvgResponse = (16)

4.2 Experimental Results and Analysis

In this section, we compare HSI with five existing methods including BER, LIU,
TSAI, BCE, and ME. The notations defined in Section 2 are applied to describe
the methods. To ensure a fair comparison, we selected the same set of data for
training all systems, and used the rest of the data for performance evaluation.
In addition, the experimental results presented below were obtained based
on GMMs without tuning the parameters. In Section 4.2.3, we analyze the
influence of parameter tuning.

4.2.1 On Vocal/Nonvocal Segmentation. Accurate vocal/nonvocal segmen-
tation is important to system performance. In the first experiment, we evalu-
ated the accuracy of our scheme in identifying vocal and nonvocal segments. The
method was trained using both vocal and nonvocal segments from the datasets
described in Section 4.1.1. The size of the training data was 20% of the orig-
inal test collections. We evaluated the classification performance on the basis
of frame classification accuracy. Table IV shows the confusion matrix of the
vocal/monvocal segmentation. In this table, the rows indicate the ground-truth
of the segments and the columns correspond to the hypotheses. The results
show that a major part of missegmentation was due to errors of identifying
vocal segments. Throughout our study, we also found that nearly 90% of the
misidentified vocal segments contained relatively loud background music or
other noise.



Table IV. Confusion Matrix of the Vocal/Nonvocal Segmentation

Hypothesized (%)
Actual Dataset 1 Dataset 11
Vocal Nonvocal Vocal Nonvocal
Vocal 92.4 7.6 87.1 12.9
Nonvocal 6.6 93.4 10.3 89.7
Hypothesized (%)
Actual Dataset II1 Dataset IV
Vocal Nonvocal Vocal Nonvocal
Vocal 93.5 6.5 92.1 7.9
Nonvocal 9.6 90.4 8.3 91.7

Table V. Identification Accuracy Comparison (Results are given by five-fold cross-validation.
HSI-L denotes linear combination of likelihood score with same weight and HSI-V denotes
HSTI only considering vocal component.)

Singer Identification Accuracy(%)
Identification Dataset 1 Dataset 11 Dataset | Dataset
Methods Female | Male | Ave. | Female | Male | Ave. 111 v

HSI 86.3 88.3 | 87.3 77.0 75.2 | 76.1 89.9 84.2

HSI-L 78.2 80.2 | 79.2 69.8 704 | 70.1 85.9 80.2

HSI-V 76.2 79.3 | 77.2 68.5 68.5 | 68.5 82.4 79.4
TSAI 73.0 714 | 722 61.0 63.4 | 62.2 79.5 75.2
LIU 66.5 66.1 | 66.3 55.2 56.4 | 55.8 77.3 70.9
BER 65.3 65.3 | 65.3 56.2 55.4 | 55.8 74.5 69.2
BCE 66.2 66.1 | 66.1 56.8 56.2 | 56.5 77.6 67.8
ME 65.8 65.6 | 65.7 55.3 55.1 | 55.2 76.7 68.2

4.2.2 On Identification Accuracy. In this section, we describe a compara-
tive study on the accuracy of the various singer identification schemes. Table V
summarizes the results for the four datasets. The bottom four rows show how
the BER, LIU, BCE, and ME performed. It is worth noting that, since both
TSAI and HSI are based on GMM, their performance is sensitive to parameter
settings. In this experiment, we randomly initialized the GMM parameters. Pa-
rameter tuning and its impact on performance is studied in Section 4.2.3. The
experiments show that HSI and TSAI were the two most accurate methods, al-
though TSAI was consistently less accurate than HSI. This may be explained by
the fact that TSAI only considers MFCC-based acoustic characteristics inside
the vocal segments, while HSI takes more acoustic characteristics into account
and considers both vocal and nonvocal segments.

Overall, the experimental results show that HSI significantly outperformed
other approaches. For example, Table VI shows that, compared to TSAI, the HSI
method improved the identification precision from 72.5% to 87.3% for dataset
I, 62.1% to 76.2% for dataset II, 79.5% to 89.9% for dataset III, and 75.2% to
84.2% for dataset IV. While the improvement over TSAI was significant, the
imporvement over LIU and the other methods was even more substantial. On
average, around 30% improvement can be observed for the four datasets. To
enhance the stability and robustness of the empirical study, we also validated
the approach using K -fold cross-validation with K set to 5. This showd a similar
level of improvement; the results are given in Table V.



Table VI. Identification Accuracy Comparison

Singer Identification Accuracy(%)
Identification Dataset 1 Dataset 11 Dataset | Dataset
Methods Female | Male | Ave. | Female | Male | Ave. III v

HSI 86.4 88.2 | 87.3 77.4 75.0 | 76.2 89.9 84.2
TSAI 73.3 71.3 | 72.5 61.1 63.1 | 62.1 79.5 75.2
LIU 66.4 66.0 | 66.2 55.2 56.4 | 55.8 77.3 70.4
BER 65.4 65.2 | 65.3 56.0 554 | 56.7 74.5 69.2
BCE 66.2 66.1 | 66.1 56.8 56.2 | 56.5 77.3 59.9
ME 65.8 65.6 | 65.7 55.3 55.7 | 55.5 76.6 68.3

Table VII. Factors Affecting HSI Accuracy

Singer Identification Accuracy(%)
Identification Dataset 1 Dataset 11 Dataset | Dataset
Methods Female | Male | Ave. | Female | Male | Ave. 111 v
HSI 86.4 88.2 | 87.3 774 75.0 | 76.2 89.9 84.2
HSI-LIR 80.2 82.2 | 81.2 72.7 715 | 72.1 86.9 81.0
HSI-L 78.2 80.2 | 79.2 69.7 70.5 | 70.1 85.9 80.2
HSI-V 76.2 79.3 | 77.2 68.7 68.9 | 68.8 82.4 79.4

HSI has two advantages over the other competitive schemes. First, HSI ex-
tracts both vocal and nonvocal features from songs. The use of multiple features
from both vocal and nonvocal components can result in more comprehensive
statistical models for songs by a particular singer and hence result in better
identification effectiveness. Second, the weights for fusing likelihood scores
derived via logistic regression can capture joint effects among various acoustic
characteristics. This naturally raises the question of how much each of these
factors contributes toward improving HSI’s accuracy. In a second experiment,
we examined how the accuracy of HSI was affected by these factors. Several
variations on HSI were developed and evaluated using the same test data as
above; the results are given in Table VII. The HSI-LIR variation uses linear
regression, rather than logistic regression, to estimate fusion weights. HSI-L
is even simpler, and uses linear fusion weights. HSI-V uses only the vocal
segments and the features extracted from these to build singer characteristic
models. As expected, the nonlinear likelihood value fusion weights generation
scheme presented in Section 3.3 plays an important role in the whole identifica-
tion procedure and can bring significant improvement in identification accuracy.
Table VII shows that HSI based on logistic regression is significantly more ac-
curate than HSI using linear weights or linear regression to estimate weights.
Table VII shows that the use of nonvocal information in addition to vocal infor-
mation also leads to a significant improvement in accuracy. This strengthens the
claim that nonvocal information helps to improve identification effectiveness.

4.2.3 On GMM Parameter Tuning. Gaussian Mixture Models (GMMSs) are
among the most statistically popular methods for data modeling. Each GMM
specifies the number of mixture components J that affects how well the model
can yield a concise, accurate data representation for a given input. Ideally, the
number of mixture components corresponds to the number of groups present



Table VIII. Effect of GMM Parameter Tuning

Singer Identification Accuracy (%)
Identification Dataset 1 Dataset 11 Dataset | Dataset
Methods Female | Male | Ave. | Female | Male | Ave. III v
HSI-T 91.2 93.2 | 92.2 81.7 83.5 | 82.6 92.4 89.5
HSI 86.4 88.2 | 87.3 774 75.0 | 76.2 89.9 84.2
TSAI-T 89.1 90.3 | 89.7 72.1 73.1 | 72.6 83.4 80.4
TSAI 73.3 71.3 | 72.5 61.1 63.1 | 62.1 79.5 75.2

in the input. However, a larger J leads to more expensive computation, and so
there is a tradeoff between performance and accurate modeling. For this study,
we applied the minimum description length (MDL) principle as a criterion for
the selection of J [Rissanen 1978], adopting an idea that has been used for
still-image processing [Carson et al. 2002; Greenspan et al. 2001]. The goal of
our procedure is to pick a J that maximizes the following equation:

logL(®%,,IVs) — %logN, (17

where ©%, . is the parameter set for a J-mixtures GMM, L is the likelihood
function, and [, is the number of free parameters for a model containing j
mixture components. For a Gaussian mixture having full covariance matrices,
we can have

lp=0 —D+jd + j4TH, (18)

Using the above principle, we may find two models with different j values but
with the same data modeling quality. In this case, the simpler model will be
selected. Based on our experimental results, the value of J can range from 2 to 7.

After introducing the basic principle on the parameter tuning in our HSI, now
we proceed to study the effect of this procedure empirically. Our basic method-
ology is to compare the accuracy improvement of the GMM based approaches
due to the parameter tuning. Table VIII shows how HSI and TSAI perform if
parameter tuning is considered (HSI and TSAI are the untuned versions of
the methods; HSI-T and TSAI-T are versions with tuning applied). The perfor-
mance gain observed in this experiment verifies the effectiveness of parameter
tuning (between 5% and 26% for two methods). However, it is clear that even
after tuning TSAI’s identification accuracy was still significantly lower than
HST’s on large datesets. For TSAI, the identification accuracy after the opti-
mization was very close to results achieved by Tsai and Wang [2006]. Also,
TSATI’s performance improvement was much higher than that achieved by HSI.
Similarly to the reason given in Section 4.2.2, this was due to the effect of the
logistic regression-based decision module. On the other hand, it also implies
that TSAI is more sensitive to the optimization procedure.

4.2.4 On Query Efficiency. For large music databases, response time is
an important aspect of system performance. Although, as shown in the last
section, the statistical singer modeling module and extra decision module in the
HSI improve the accuracy, they might introduce query cost overhead. In this
experiment, we showed how the extra mechanisms in HSI affect its performance
relative to other approaches.



Table IX. Identification Efficiency Comparison

Singer Query Time(s)
Identification Dataset I Dataset 11 Dataset | Dataset
Methods Female | Male Ave. Female | Male Ave. IIT v

HSI 0.269 0.241 | 0.255 1.199 1.112 | 1.156 0.294 0.304
TSAI 0.277 0.213 | 0.235 1.731 1.631 | 1.681 0.318 0.320
LIU 0.216 0.226 | 0.221 1.780 1.764 | 1.772 0.305 0.301
BER 0.227 0.235 | 0.231 1.756 1.804 | 1.775 0.311 0.321
BCE 0.217 0.227 | 0.222 1.734 1.744 | 1.739 0.313 0.309
ME 0.227 0.235 | 0.231 1.722 1.794 | 1.758 0.321 0.311

Table IX shows the total response time for the different singer identification
schemes over the four datasets for the same set of tests used in Section 4.2.2.
From the experimental results summarized in the table, we can see that, for
the small test collections (datasets I, IIT and IV), HSI has similar efficiency
compared to the other methods. However, in the evaluation on the large data
set (dataset II), HSI was significantly faster than the other five methods. The
identification tests on dataset II (containing 8000 songs) required between 1.6
and 1.8 s for BER, LIU, TSAI, BCE, and ME. In contrast, HSI required between
1.1 and 1.2 s for the same set of tests (around a 30% improvement). Another in-
teresting observation is that, unlike the other five approaches, the proportional
increase in response time for HSI between the different sizes of data was much
smaller than the other methods.

4.2.5 On Scalability Comparison. Scalability is particularly important for
large music information systems, because such systems can potentially contain
thousands of songs. As the number of music items increases, the performance
of a system may degrade due to noise and to the presence of more similar
songs in the database. Another important aspect of scalability is the cost of
incrementally adding new music items to an existing music database. In this
section, we examine the behavior of our scheme as the data set changes. We
evaluate other approaches against HSI using (1) datasets containing different
numbers of singers) and (2) datasets containing a different numbers of songs.

In the first experiment, we compared the cost of “upgrading” the system as
new artists are gradually added. We started with one singer, and then added one
singer at a time up to 25 singers. The subset of singers and the order of singer
insertion was chosen randomly, but the same order was used for all systems. We
measured the cost of upgrading the classifier after adding each new singer, and
we present the upgrade costs at various points in the process (e.g., going from
four to five singers, from 9 to 10, and so on). Table X gives the results for this
experiment. The results show that, compared to other methods, HSI consumed
much less construction time. One thing worth noting is that when the number
of singers was fewer than five, all other methods used less time to complete the
construction than HSI did. This was because, as well as building GMMs for the
new singer, HSI’s construction cost also includes training time for relative LR
analysis. This overhead makes HSI less efficient in terms of construction cost
when the number of classes is small. From Table X, we also observe that there
was no significant increase in reconstruction time when the system included



Table X. Construction Time Comparison on Dataset II—
Different Singer Numbers

Singer Identification Methods (s)
Number | HSI | TSAI | LIU | BER | BCE | ME
1 1395 | 1255 | 1289 | 1390 | 1360 | 1259
5 1409 | 1395 | 1408 | 1500 | 1590 | 1765
10 1392 | 1800 | 2051 | 2280 | 2170 | 2234
15 1402 | 2301 | 2450 | 2756 | 2344 | 2654
20 1410 | 2998 | 3154 | 3572 | 3245 | 3498
25 1410 | 3387 | 3754 | 4129 | 3899 | 4172
100 T 2 T
—_ HSI —— HSI ——
R TSAI 1.8 | TSAl zzzzza
> 90 LU == | LIU ez ZN
) BER 3 BER oy gg
5 BCE wmmmm @ 16 BCE mmm e N
£ 14 4
S | - : s :§
2 7 > N 5N
g g 1.2 ?s N
2 R N
A
50 0.8 .
2k 6k 8k
Size of Data Size of Data
(a) Query accuracy (b) Query time

Fig. 3. Scalability comparison on dataset II—different sizes of data.

more object singers. The main reason is that, with the HSI approach, only one
associated modeling structure needs to be built when a new singer is integrated
into the database. This advantage can lead to great saving A on reconstruction
time. In contrast, all other methods need to be rebuilt entirely after a new singer
(i.e., a new classification class) is added into the database.

In the second experiment, we examined the effect on query accuracy and
query cost against the size of the database (total number of songs). As the num-
ber of stored items increases, we might expect the performance of the system to
degrade; the query cost will most likely slow, and the accuracy will most likely
decrease because there are more similar songs in the system. In order to carry
out this measurement, we created four different-sized databases by randomly
selecting 2000, 4000, 6000, and 8000 songs from dataset II. Twenty percent of
the data was used for training and the rest for testing (i.e., there was no overlap
between training and testing sets). Figure 3 shows the experimental results for
all the systems. We observe that the accuracy and query times for both LIU
and BER degraded significantly as the data size increased. This is because the
larger data sizes affect the performance of the machine learning-based classi-
fiers in those systems. While TSAI achieved better scalability, the improvement
was rather limited. Compared to the other approaches, HSI’s performance was
relatively robust against the volume of data. There was no dramatic decrease
in accuracy or increase in query processing time with larger datasets, for ex-
ample, around 79% accuracy for a large size of 2000 songs, which was only 4%
higher than the same system with 8000 songs. The main reason is that HSI



is constructed using multiple feature from the songs and this enables HSI to
capture the song characteristics more precisely. Furthermore, the query time
cost increases relatively slowly against the increasing size of the database.

4.2.6 On Robustness Comparison. Real-world applications often require
singer identification under less than ideal conditions. For example, music data
used for the query may have been recorded live and may contain noise. Or
perhaps the system was trained against a nonrepresentative sample of works
by a particular artist. In this section, the robustness of our proposed HSI system
is demonstrated by comparing it against the robustness of other approaches.

4.2.6.1 Robustness Against Audio Alternatives. The human auditory sys-
tem has a very refined ability to identify particular sounds or music, even in the
presence of moderate amounts of noise and/or distortion. In real-world appli-
cations, music retrieval systems might also have to deal with less than perfect
samples of music data, either as stored items or as queries. In this section, to
study the robustness of the different singer identification techniques, we exam-
ine how the accuracy of retrieval was affected by distortion in the query music
data.

During the evaluation, we ran the same set of tests on dataset II as in the
earlier accuracy experiment. However, we applied various kinds of distortion
to each query song and compared the accuracy of the distorted queries with the
accuracy of the nondistorted queries. Figures 4 and 5 summarize the accuracy
of the six different systems in the presence of distortion. The performance on
dataset I shows a similar trend but we omit the results for that experiment to
save space.

The experimental results clearly demonstrate that HSI was the most robust
technique. It performed significantly better than the competitors on all distor-
tion cases. For example, HSI was robust to echo with an 8-s delay, 70% volume
amplification, 60% volume deamplification, 8-s cropping, and 45-dB SNR white
background noise on average.® In contrast, TSAI can only tolerate echo with a
10-s delay, 55-dB SNR white background noise, 10-s cropping, 60% volume am-
plification, and 70% volume deamplification. Thus, we can conclude that HSI
is fairly robust to different levels of noise and acoustic distortion.

4.2.6.2 Robustness Against Segmentation Length. The first step of a typ-
ical music information retrieval system is to divide the incoming music data
into segments for further processing via a sliding window. The segment length
has the potential to affect the final effectiveness of the systems substantially.
Shorter frames can contain more precise information (e.g., a sample of solo
voice). On the other hand, having short frames (and thus more frames) results
in higher processing time and potentially more expensive storage costs. Longer
frames have a higher chance to contain both vocal and nonvocal components,

8The equation SNRyp = 10logy, % was used to calculate the signal-to-noise ratio, where S is the
signal power, and NV is the noise power in decibels.
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Fig. 4. Robustness comparison of singer identification methods on dataset II—different kinds of
audio alternativs.

which make them less useful for capturing precise information for artist
recognition.

In this study, we investigated the effects of segment lengths on the accuracy
of different systems. We tested six different segment lengths from 0.1 to 1.1 s
with the two datasets. Figure 6 presents identification accuracy of the systems
as a function of segment length. Since ME calculates acoustic features based
on an entire piece of music, the method was not included in this study. The
figure shows that changes in segment length have a substantial impact on the
accuracy of LIU, TSAI, BER, and BCE. The effectiveness of all those methods
decreased significantly when the length of music frame increased. However, we
did not observe such trends in our approach, suggesting that HSI’s performance
is more resilient to changes in segment length.

4.2.6.3 Robustness Against Various Training Conditions. Learning-based
approaches are typically required to work under resource constraints. For ex-
ample, since training can be a costly exercise, training resources can be reduced
by using fewer training examples, or lower-quality training examples. On the
other hand, making such sacrifices may lead to a less effective classifier. In this
section, we compare HSI and other systems on their robustness under various
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Fig. 5. Robustness comparison of singer identification methods on dataset II—different kinds of
noise.
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Fig. 6. Robustness of different schemes against various segment lengths.

training conditions. These cases include the following:

—Mislabeled training examples. As the most crucial resource, training datasets
labeled by human could contain mislabeled training examples. The system
should be robust to this kind of error.

—Minimal positive training examples. Training example selection is expensive
since it relies on a manual process. If the system can perform well with a
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Fig. 7. Robustness of different schemes against various sizes of mislabeled training examples.

small number of positive training examples, this will significantly reduce the
training cost.

In the first experiment, the effects of mislabeled training examples were stud-
ied. To carry out experiments under different sizes of incorrect training data,
1%, 5%, 10%, 15%, 20%, 25%, and 30% training data from both datasets were
randomly selected and their original labels were reversed. Figure 7 summarizes
the precision rate versus the different noise settings on the various methods.
The results show that HSI was superior to the other approaches when the pro-
portion of mislabeled data was increased. As can be seen, the performance of
the five other approaches degraded dramatically after the size of the mislabeled
data was greater than 10% of the whole training set. In contrast, HSI main-
tained reasonable accuracy even with 15% incorrect training data of dataset
II. From the above, we can easily see that, by taking advantage of the deci-
sion model and comprehensive singer modeling scheme, our scheme was able
to achieve better robustness against mislabeled training data.

Positive training example sets are typically quite small in real-life applica-
tions. In the second experiment, we investigated the effects of training set size
on the accuracy of HSI and other methods. To make the experimental results
more stable, data from different categories was chosen uniformly from our data
collections. Different portions of the positive examples were randomly selected,
and then how HSI and other approaches performed with changes to the amount
of positive training data (from 10% to 50%) was studied. From the results shown
in Figure 8, we observe that the performance of all methods degraded when the
size of the positive training examples was decreased to a certain threshold.
However, compared to the other approaches, HSI emerged as the more robust
technique when relatively small amounts of training examples were available.
The superior robustness of HSI was due to the fact that the GMM based on
multiple features can capture more information about objects from a particular
singer, and the decision module with a logistic-based score fusion function can
rectify possible misclassifications. The results corroborate the conclusions from
the previous experiments that (1) HSI is a novel identification technique with
good robustness against different constraint learning conditions, and (2) the
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Table XI. “Album Effect” for Different Singer Identification Methods

Singer Identification Accuracy(%)
Identification Dataset II(A) Dataset I1

Methods Female | Male | Ave. | Female | Male | Ave.
HSI 69.4 69.2 | 69.3 77.4 75.0 | 76.2
TSAI 53.3 51.3 | 52.5 61.1 63.1 | 62.1
LIU 46.4 46.0 | 46.2 55.2 56.4 | 55.8
BER 45.4 45.2 | 45.3 56.0 55.4 | 56.7
BCE 46.2 46.4 | 46.3 56.8 56.2 | 56.5
ME 45.8 45.6 | 45.7 55.3 55.7 | 55.5

decision module in conjunction with the hybrid architecture provides superior
query effectiveness.

4.2.7 On the Album Effect. As mentioned earlier, the “album effect” can
have a great impact on the performance of the singer identification process. The
main cause of this problem is that the classifier actually learns the mastering
and production process rather than the artist’s voice. Consequently, it is the
album’s “style” rather than the singer that is being identified by the classifier.
The performance of different systems degrades substantially when the songs
used in training and test are from different albums. To study the album effect
on different identification methods, we reorganized dataset II to obtain a new
version—dataset II(A). In dataset II(A), for songs performed by the same singer,
we made sure that the songs in the training dataset came from different albums.
Similarly, test cases for a given singer were drawn from different albums. We
compared the results obtained using dataset II and dataset I1(A).

The experimental results are summarized in Table XI and confirm the find-
ings of other researchers. As expected, the identification accuracies based on
dataset II(A) were lower than those of dataset II for the all identification meth-
ods. However, we found that HSI appeared to be the least affected by the “album
effect.” For HSI, the difference between identification accuracies obtained using
two datasets was 6.9%, which is less than the accuracy decrease for all other
methods.



5. CONCLUSIONS AND FUTURE WORK

In recent years, the emergence and maturity of network and data storage tech-
nologies have made a significant amount of music data available in digital
form. Content-based music retrieval has gained considerable momentum as
a means of managing and accessing large music datasets. Although singer
identification has received a large amount of research attention, traditional
techniques have three basic impediments when applied in real-life applica-
tions: (i) poor scalability and expensive reconstruction cost; (ii) lack of compre-
hensive evaluation results based on large scale datasets; and (iii) low query
accuracy.

Motivated by these concerns, we developed a novel framework, called HSI,
to facilitate effective singer identification in large music databases. The system
has been fully implemented and tested with different datasets. As shown in
our experimental evaluation, the HSI system not only has significantly better
effectiveness, scalability, and efficiency over the state-of-the-art systems, but
also achieves significantly better robustness against various kinds of acous-
tic distortion. In addition, HSI enjoys less sensitivity to segment length and
mislabeled training examples than do previous approaches.

These improvements are accomplished by the following:

—A novel singer identification framework based on the multiple feature inte-
gration and a likelihood fusion scheme using a logistic regression function.

—A novel singer characteristic modeling method based on stochastic models
trained with the learning samples.

—A layered system architecture for the seamless combination of the two
components—singer characteristic models and a score fusion component with
superior scalability and efficiency.

In summary, the HSI framework is an effective, scalable, and robust solution
for the singer identification problem. Despite the current success of HSI, there
are still further directions for investigation. We plan to evaluate the frame-
work on a larger dataset and develop advanced acoustic feature extraction
methods to further improve accuracy and robustness. We will examine novel
indexing structures to reduce the overall query processing cost and develop an
analytic model for predicting query costs. Another promising research direc-
tion is to extend the current approach to indexing other kinds of multimedia
data.
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