85 research outputs found

    A high fat breakfast attenuates the suppression of appetite and acylated ghrelin during exercise at simulated altitude.

    Get PDF
    High-altitude exposure induces a negative energy balance by increasing resting energy expenditure and decreasing energy intake. This diminished energy intake is likely caused by altitude-induced anorexia and can have detrimental effects for those travelling to high-altitude. We aimed to investigate whether altering the macronutrient composition of breakfast could attenuate altitude-induced anorexia and augment energy intake at high-altitude. Twelve healthy men (aged 26 (8) years, body mass index 23.9 (2.7) kg·m(-2)) completed two, 305min experimental trials at 4300m simulated altitude (~11.7% O2). After an overnight fast, participants entered a normobaric hypoxic chamber and rested for one hour, before receiving either a high fat (HF; 60% fat, 25% carbohydrate) or an isocaloric high carbohydrate (HC; 60% carbohydrate, 25% fat) breakfast. One hour after breakfast, participants performed 60min of treadmill walking at 50% of relative V̇O2max. An ad-libitum buffet meal was consumed 1h 30min after exercise. Appetite perceptions, blood samples and substrate oxidation rates were measured throughout. A significantly higher area under the curve for composite appetite score was observed during exercise in HF (40 (12) mm·h(-1)) compared with HC (30 (17) mm·h(-1), P=0.036). During exercise, lower insulin concentrations (P=0.013) and elevated acylated ghrelin concentrations (P=0.048) were observed in HF compared with HC. After exercise there was no significant difference in composite appetite score (P=0.356), acylated ghrelin (P=0.229) or insulin (P=0.513) between conditions. Energy intake at the buffet did not significantly differ between conditions (P=0.384). A HF breakfast attenuated appetite suppression during exercise at 4300m simulated altitude, however ad-libitum energy intake did not increase

    Myeloablative vs Reduced-Intensity Conditioning Allogeneic Hematopoietic Cell Transplantation for Chronic Myeloid Leukemia

    Get PDF
    Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment of chronic myeloid leukemia (CML). Optimal conditioning intensity for allo-HCT for CML in the era of tyrosine kinase inhibitors (TKIs) is unknown. Using the Center for International Blood and Marrow Transplant Research database, we sought to determine whether reduced-intensity/nonmyeloablative conditioning (RIC) allo-HCT and myeloablative conditioning (MAC) result in similar outcomes in CML patients. We evaluated 1395 CML allo-HCT recipients between the ages of 18 and 60 years. The disease status at transplant was divided into the following categories: chronic phase 1, chronic phase 2 or greater, and accelerated phase. Patients in blast phase at transplant and alternative donor transplants were excluded. The primary outcome was overall survival (OS) after allo-HCT. MAC (n = 1204) and RIC allo-HCT recipients (n = 191) from 2007 to 2014 were included. Patient, disease, and transplantation characteristics were similar, with a few exceptions. Multivariable analysis showed no significant difference in OS between MAC and RIC groups. In addition, leukemia-free survival and nonrelapse mortality did not differ significantly between the 2 groups. Compared with MAC, the RIC group had a higher risk of early relapse after allo-HCT (hazard ratio [HR], 1.85; P = .001). The cumulative incidence of chronic graft-versus-host disease (cGVHD) was lower with RIC than with MAC (HR, 0.77; P = .02). RIC provides similar survival and lower cGVHD compared with MAC and therefore may be a reasonable alternative to MAC for CML patients in the TKI era

    Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database

    Get PDF
    More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinson's disease (PD). To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of ∼27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS) were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P<5×10−8) association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P = 1.3×10−8). All meta-analysis results are freely available on a dedicated online database (www.pdgene.org), which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies

    Consanguinity and reproductive health among Arabs

    Get PDF
    Consanguineous marriages have been practiced since the early existence of modern humans. Until now consanguinity is widely practiced in several global communities with variable rates depending on religion, culture, and geography. Arab populations have a long tradition of consanguinity due to socio-cultural factors. Many Arab countries display some of the highest rates of consanguineous marriages in the world, and specifically first cousin marriages which may reach 25-30% of all marriages. In some countries like Qatar, Yemen, and UAE, consanguinity rates are increasing in the current generation. Research among Arabs and worldwide has indicated that consanguinity could have an effect on some reproductive health parameters such as postnatal mortality and rates of congenital malformations. The association of consanguinity with other reproductive health parameters, such as fertility and fetal wastage, is controversial. The main impact of consanguinity, however, is an increase in the rate of homozygotes for autosomal recessive genetic disorders. Worldwide, known dominant disorders are more numerous than known recessive disorders. However, data on genetic disorders in Arab populations as extracted from the Catalogue of Transmission Genetics in Arabs (CTGA) database indicate a relative abundance of recessive disorders in the region that is clearly associated with the practice of consanguinity

    Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19 A Living Systematic Review of Multiple Streams of Evidence

    Get PDF
    Background: Mechanical ventilation is used to treat respiratory failure in coronavirus disease 2019 (COVID-19). Purpose: To review multiple streams of evidence regarding the benefits and harms of ventilation techniques for coronavirus infections, including that causing COVID-19. (PROSPERO registration: CRD42020178187) Data Sources: 21 standard, World Health Organization–specific and COVID-19–specific databases, without language restrictions, until 1 May 2020. Study Selection: Studies of any design and language comparing different oxygenation approaches in patients with coronavirus infections, including severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS), or with hypoxemic respiratory failure. Animal, mechanistic, laboratory, and preclinical evidence was gathered regarding aerosol dispersion of coronavirus. Studies evaluating risk for virus transmission to health care workers from aerosol-generating procedures (AGPs) were included. Data Extraction: Independent and duplicate screening, data abstraction, and risk of bias assessment (GRADE for certainty of evidence and AMSTAR 2 for included systematic reviews). Data Synthesis: 123 studies were eligible (45 on COVID-19, 70 on SARS, 8 on MERS), but only 5 studies (1 on COVID-19, 3 on SARS, 1 on MERS) adjusted for important confounders. A study in hospitalized patients with COVID-19 reported slightly higher mortality with noninvasive ventilation (NIV) than with invasive mechanical ventilation (IMV), but 2 opposing studies, 1 in patients with MERS and 1 in patients with SARS, suggest a reduction in mortality with NIV (very low-certainty evidence). Two studies in patients with SARS report a reduction in mortality with NIV compared with no mechanical ventilation (low-certainty evidence). Two systematic reviews suggest a large reduction in mortality with NIV compared with conventional oxygen therapy. Other included studies suggest increased odds of transmission from AGPs. Limitation: Direct studies in COVID-19 are limited and poorly reported. Conclusion: Indirect and low-certainty evidence suggests that use of NIV, similar to IMV, probably reduces mortality but may increase the risk for transmission of COVID-19 to health care workers

    Nonlinear Dendritic Dynamics and their Effect on the Information Processing Capabilities of Neurons /

    No full text
    A major challenge in neuroscience is to reverse engineer the brain and understand its information processing and learning capabilities. While the pace of discovery and untangling of the brain's staggering dynamics is advancing at unprecedented speed especially with the recently developed tools and imaging techniques, this advancement is not devoid of risk: the arsenal of novel techniques carries a huge mass of data that may complicate further the unraveling of brain function. Is every ion channel, every spine, every dendrite, every neuron and every synaptic connection necessary to achieve the computational capabilities of the central nervous system? Answering this question rises the need for a two-way communication between experiments and mathematical theoretical work. Neural networks composed of point neurons and endowed with biologically inspired synaptic learning rules have been successfully applied to a variety of challenging learning- related tasks, namely in problems of pattern recognition, associative memory, map formation, among others. While these networks are good at tasks they are built for, there still exists a gap separating us from fully understanding how the brain is good at the large multitude of tasks it can perform. When we reflect upon most efforts in building and simulating neural networks, we ask ourselves about the appropriate scale for modeling: Given the complexity of the nervous system, is it enough to model the neurons as point-like units in which a weighted sum of synaptic inputs is passed through a single spike-generating mechanism? From a modern perspective, the point neuron seems likely to be a poor representation of synaptic integration in neurons with large, profusely branched, active dendrites that populate brain structures associated with advanced cognitive functions and learning. These dendrites are endowed with nonlinear active conductances that modulate synaptic integration and somatic activity. Does the increased nonlinearity at the level of the neuron enhance the computational power of the neuron, and that of the network? In an effort to find answers to these questions, we implemented a simplified mathematical model of a pyramidal neuron endowed with complex dendritic dynamics and quantified its information processing capabilities using Shannon theory of mutual information. We proved that a neuron that holds multiple sites of independent thresholding of synaptic inputs and passive and active forward and backward propagation along with backpropagating action potential activated calcium spike firing and coincidence detection has a higher capacity for information processing than a point neuron and a network of two point neurons. The advantage in information processing, coupled with the simplicity and scalability of the neuron model implemented, constitute a compelling enough reason to promote the usage of such a spatially extended neuron model in networks that undergo plasticity and learnin

    Aids : fakta & harapan

    No full text
    +64hlm.;24c

    SIDA : los hechos, la esperanza

    No full text
    Seleccionada por la OMS y la CCE, supervisada por el Departament de Sanitat de la Generalitat de Catalunya y con la colaboración del Institut Municipal de la Salut del Ayuntamiento de BarcelonaBoletín informativo sobre la enfermedad del SIDA en el que se esquematizan e ilustran los siguientes puntos: qué es el SIDA, cómo se transmite y principales modos de transmisión, cómo se detecta, situación de la epidemia en el mundo, concretando en occidente, en España y América, tratamiento y prevención, especialmente en niños y jóvenes. Se incluye un cuestionario, fechas y acontecimientos históricos sobre la enfermedad, los diez puntos más importantes a tener en cuenta, léxico y direcciones de interés a nivel nacional y autonómico.CataluñaBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín, 5; 28014 Madrid; Tel. +34917748000; [email protected]
    • …
    corecore