32 research outputs found

    Pulsing corals: A story of scale and mixing

    Get PDF
    Effective methods of fluid transport vary across scale. A commonly used dimensionless number for quantifying the effective scale of fluid transport is the Reynolds number, Re, which gives the ratio of inertial to viscous forces. What may work well for one Re regime may not produce significant flows for another. These differences in scale have implications for many organisms, ranging from the mechanics of how organisms move through their fluid environment to how hearts pump at various stages in development. Some organisms, such as soft pulsing corals, actively contract their tentacles to generate mixing currents that enhance photosynthesis. Their unique morphology and intermediate scale where both viscous and inertial forces are significant make them a unique model organism for understanding fluid mixing. In this paper, 3D fluid-structure interaction simulations of a pulsing soft coral are used to quantify fluid transport and fluid mixing across a wide range of Re. The results show that net transport is negligible for Re<10Re<10, and continuous upward flow is produced for Re10Re\geq 10.Comment: 8 pages, 8 figure

    What Can Computational Modeling Tell Us About the Diversity of Odor-Capture Structures in the Pancrustacea?

    Get PDF
    A major transition in the history of the Pancrustacea was the invasion of several lineages of these animals onto land. We investigated the functional performance of odor-capture organs, antennae with olfactory sensilla arrays, through the use of a computational model of advection and diffusion of odorants to olfactory sensilla while varying three parameters thought to be important to odor capture (Reynolds number, gap-width-to-sensillum-diameter ratio, and angle of the sensilla array with respect to oncoming flow). We also performed a sensitivity analysis on these parameters using uncertainty quantification to analyze their relative contributions to odor-capture performance. The results of this analysis indicate that odor capture in water and in air are fundamentally different. Odor capture in water and leakiness of the array are highly sensitive to Reynolds number and moderately sensitive to angle, whereas odor capture in air is highly sensitive to gap widths between sensilla and moderately sensitive to angle. Leakiness is not a good predictor of odor capture in air, likely due to the relative importance of diffusion to odor transport in air compared to water. We also used the sensitivity analysis to make predictions about morphological and kinematic diversity in extant groups of aquatic and terrestrial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and little-to-no animal-induced currents

    A Tale of Two Antennules: The Performance of Crab Odor-Capture Organs in Air and Water

    Get PDF
    Odour capture is an important part of olfaction, where dissolved chemical cues (odours) are brought into contact with chemosensory structures. Antennule flicking by marine crabs is an example of discrete odour capture (sniffing) where an array of chemosensory hairs is waved through the water to create a flow–no flow pattern based on a narrow range of speeds, diameters of and spacings between hairs. Changing the speed of movement and spacing of hairs at this scale to manipulate flow represents a complicated fluid dynamics problem. In this study, we use numerical simulation of the advection and diffusion of a chemical gradient to reveal how morphological differences of the hair arrays affect odour capture. Specifically, we simulate odour capture by a marine crab (Callinectes sapidus) and a terrestrial crab (Coenobita rugosus) in both air and water to compare performance. We find that the antennule morphologies of each species are adaptions to capturing odours in their native habitats. Sniffing is an important part of odour capture for marine crabs in water where the diffusivity of odorant molecules is low and flow through the array is necessary. On the other hand, flow within the hair array diminishes odour-capture performance in air where diffusivities are high. This study highlights some of the adaptations necessary to transition from water to air

    Retention of rising droplets in density stratification

    Get PDF
    In this study, we present results from experiments on the retention of single oil droplets rising through a two-layer density stratification. These experiments confirm the significant slowdown observed in past literature of settling and rising particles and droplets in stratification, and are the first experiments to study single liquid droplets as opposed to solid particles. By tracking the motion of the droplets as they rise through a stratified fluid, we identify two timescales which quantitatively describe this slowdown: an entrainment timescale, and a retention timescale. The entrainment timescale is a measure of the time that a droplet spends below its upper-layer terminal velocity and relates to the length of time over which the droplet's rise is affected by entrained dense fluid. The retention time is a measure of the time that the droplet is delayed from reaching an upper threshold far from the density transition. Both timescales are found to depend on the Froude and Reynolds numbers of the system, Fr =Uu/(Nd)=U_u/(Nd) and Re =ρuUud/ν=\rho_u U_u d/\nu. We find that both timescales are only significantly large for Fr 1\lesssim1, indicating that trapping dynamics in a relatively sharp stratification arise from a balance between drop inertia and buoyancy. Finally, we present a theoretical formulation for the drag enhancement Γ\Gamma, the ratio between the maximum stratification force and the corresponding drag force on the droplet, based on a simple force balance at the point of the velocity minimum. Using our experimental data, we find that our formulation compares well with recent theoretical and computational work by Zhang et al. [J. Fluid Mech. 875, 622-656 (2019)] on the drag enhancement on a solid sphere settling in a stratified fluid, and provides the first experimental data supporting their approach

    Retention of Rising Oil Droplets in Density Stratification

    Get PDF
    In this study, we present results from experiments on the retention of single oil droplets rising through a two-layer density stratification, with the goal of quantifying and parametrizing the impact of stratification on timescales that describe the delay in rising. These experiments confirm the significant slowdown observed in past literature of settling and rising particles and droplets in stratification, and these are the first experiments to study single liquid droplets as opposed to solid particles or bubbles. By tracking the motion of the droplets as they rise through a stratified fluid, we identify two new timescales which quantitatively describe this slowdown: an entrainment timescale and a retention timescale. These timescales measure dynamics that were not captured in previous timescale discussions, which primarily focused on the timescale to the velocity minimum (Umin). The entrainment timescale is a measure of the time that a droplet spends below its upper-layer terminal velocity and relates to the duration over which the droplet\u27s rise is affected by entrained dense fluid. The retention time is a measure of the time that the droplet is delayed from reaching an upper threshold far from the density transition. These two timescales are interconnected by the magnitude of the slowdown (Uu−Umin) relative to the upper-layer terminal velocity (Uu), as well as a constant that reflects the approximately universal form of the recovery of a droplet\u27s velocity from Uminto Uu. Both timescales are found to depend on the Froude and Reynolds numbers of the system, Fr =Uu/(Nd) and Re =ρuUud/ν. We find that both timescales are only significantly large for Fr ≲1, indicating that trapping dynamics in a relatively sharp stratification arise from a balance between drop inertia and buoyancy. Finally, we present a theoretical formulation for the force enhancement Γ, the ratio between the maximum stratification-induced force and the corresponding drag force on the droplet, based on a simple force balance at the point of the velocity minimum. Using our experimental data, we find that our formulation compares well with recent theoretical and computational work by Zhang et al. [J. Fluid Mech. 875, 622 (2019)] on the force enhancement on a solid sphere settling in a stratified fluid, and provides the first experimental data supporting their approach

    CO-CRYSTALS: A REVIEW

    Get PDF
    In development of new product major constraints are poor aqueous solubility and low oral bioavailability. Crystallization is one the approach has been used for enhancement of solubility of poorly aqueous soluble drugs also helps to improve physicochemical properties such as melting point, tabletability, solubility, stability, bioavailability and permeability with preserving the pharmacological properties of the active pharmaceutical ingredient. Different methods have been used for the synthesis of cocrystal such as grinding, slurry, antisolvent, hot melt extrusion, sonocrystallization, supercritical fluid, spray drying etc. The article highlights the co-crystallization, its methods and significance. &nbsp

    Cotton in the new millennium: advances, economics, perceptions and problems

    Get PDF
    Cotton is the most significant natural fibre and has been a preferred choice of the textile industry and consumers since the industrial revolution began. The share of man-made fibres, both regenerated and synthetic fibres, has grown considerably in recent times but cotton production has also been on the rise and accounts for about half of the fibres used for apparel and textile goods. To cotton’s advantage, the premium attached to the presence of cotton fibre and the general positive consumer perception is well established, however, compared to commodity man-made fibres and high performance fibres, cotton has limitations in terms of its mechanical properties but can help to overcome moisture management issues that arise with performance apparel during active wear. This issue of Textile Progress aims to: i. Report on advances in cotton cultivation and processing as well as improvements to conventional cotton cultivation and ginning. The processing of cotton in the textile industry from fibre to finished fabric, cotton and its blends, and their applications in technical textiles are also covered. ii. Explore the economic impact of cotton in different parts of the world including an overview of global cotton trade. iii. Examine the environmental perception of cotton fibre and efforts in organic and genetically-modified (GM) cotton production. The topic of naturally-coloured cotton, post-consumer waste is covered and the environmental impacts of cotton cultivation and processing are discussed. Hazardous effects of cultivation, such as the extensive use of pesticides, insecticides and irrigation with fresh water, and consequences of the use of GM cotton and cotton fibres in general on the climate are summarised and the effects of cotton processing on workers are addressed. The potential hazards during cotton cultivation, processing and use are also included. iv. Examine how the properties of cotton textiles can be enhanced, for example, by improving wrinkle recovery and reducing the flammability of cotton fibre

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore