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Abstract9

Odour capture is an important part of olfaction, where dissolved chemical cues (odours)10

are brought into contact with chemosensory structures. Antennule flicking by marine crabs11

is an example of discrete odour capture (sniffing) where an array of chemosensory hairs12

is waved through the water to create a flow-no flow pattern based on a narrow range of13

speeds, diameters of, and spacings between hairs. Changing the speed of movement and14

spacing of hairs at this scale to manipulate flow represents a complicated fluid dynamics15

problem. In this study, we use numerical simulation of the advection and diffusion of a16

chemical gradient to reveal how morphological differences of the hair arrays affect odour17

capture. Specifically, we simulate odour capture by a marine crab (Callinectes sapidus) and18

a terrestrial crab (Coenobita rugosus) in both air and water to compare performance. We19

find that the antennule morphologies of each species are adaptions to capturing odours in20



their native habitats. Sniffing is an important part of odour capture for marine crabs in21

water where the diffusivity of odourant molecules is low and flow through the array is neces-22

sary. On the other hand, flow within the hair array diminishes odour-capture performance23

in air where diffusivities are high. This study highlights some of the adaptations necessary24

to transition from water to air.25

Keywords:biofluids, Callinectes, Coenobita, terrestrialisation, mathematical model, advec-26

tion diffusion27

Olfaction, gathering information from dissolved chemical cues (odours), is a process impor-28

tant for animals in both marine and terrestrial habitats for mediating reproduction, finding29

food, and avoiding predators (e.g. [1, 2, 3, 4]). An important step in olfaction is odour capture,30

where many animals generate flow relative to their chemosensory organs. During odour capture,31

this fluid movement serves several purposes, including the transport of odourant molecules close32

to olfactory receptors at the surface of the organ and the acquisition of temporal and spatial33

information about the odour source (reviewed by [5, 6, 7]).34

Many animals, including marine crustaceans and insects, use arrays of bristle-like chemosen-35

sory hairs in order to capture odours. In addition to olfaction, bristled arrays are common tools36

for a variety of tasks involving fluid-structure interactions, including feeding, swimming, and37

flying, in a regime where inertial and viscous forces are balanced [8]. At this scale, bristled ar-38

rays typically act as a solid surface, but there may be moments of higher velocity, interactions39

with surfaces, or increased spacing between bristles such that the arrays act as leaky rakes.40

Animals have creative ways of taking advantage of this transition. For example, copepods,41

small marine crustaceans, will slowly open their bristled feeding appendages to pull in water,42

and then quickly slap the appendages together to capture plankton between the bristles [9].43

The smallest flying and swimming insects use bristled wings to reduce the force required to44
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clap wings together and fling them apart [10].45

When animals transition from water to air during the process of terrestrialisation, the prop-46

erties of the fluid change drastically: the density (ρ) of air is 1/1000 of water, dynamic viscosity47

(µ) of air is 50 times less than water, and diffusion coefficient (D) of similar chemicals typically48

is thousands of times greater in air than in water. These changes will affect both fluid-flow pat-49

terns (advection) and molecular diffusivity (diffusion). Changing fluid will alter the antennules’50

Reynolds number (Re = ULρ/µ), a dimensionless number describing the ratio of inertial to vis-51

cous forces in fluid flow, indicating a major change in advective patterns surrounding the hairs.52

Additionally, the Péclet number (Pe = UL/D) is used to determine the relative importance53

of advection and diffusion in mass transport where Pe << 1 indicates diffusion-dominated54

transport and Pe >> 1 indicates advection-dominated transport. For antennules moving from55

water to air, values for Pe cross this threshold from advection-dominated transport in water to56

diffusion-dominated transport in air.57

Although it is clear that this transition from water to air alters the dynamics of odour58

capture, early terrestrialisation events that occurred deep in time (many hundreds of millions59

of years ago) leave few clues as to how odour capture in air evolved. Studying recent examples60

of terrestrialisation can provide insight into the general process of adapting odour capture to61

air.62

One example of a relatively recent event is the split between marine and terrestrial hermit63

crabs (about 50 million years ago [11]). Marine and terrestrial hermit crabs capture odours64

with dense arrays of bristle-like chemosensory hairs, called aesthetascs, which they flick back65

and forth using antennules (Fig. 1). These arrays operate at the same scale where a bristled66

surface can act as either a solid surface or a leaky rake [7]. Previous work suggests that the67

aesthetasc arrays of marine crabs act as leaky rakes during the flick or downstroke. During68
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the return stroke, the arrays trap water between the hairs [12]. This sequence creates a flow-69

no flow pattern within the aesthetasc array, allowing marine crabs to take discrete samples of70

odour-containing water [7, 13, 14]. The ability to discretely sample is an important aspect of71

odour capture [15]. The flexibility of the marine crab’s aesthetascs also helps to drive water into72

the array during the flick since hydrodynamic drag forces the hairs apart [12, 16] (Fig. 1). In73

contrast, the aesthetascs of terrestrial hermit crabs are short, stiff, and lay shingle-like close to74

the body of the antennule or flagellum (Fig. 1) [17]. The gaps between aesthetascs for terrestrial75

crabs are much smaller than those of the marine crabs. Terrestrial hermit crabs lack the flow-no76

flow pattern seen in marine-crab arrays [18].77

These differences in hair-array morphology suggest that terrestrialisation has significant78

consequences for the physical process of odour capture. Although it is well understood that79

the physical demands organisms experience in air and water are strikingly different, very few80

studies have directly compared those demands in related species. This is due to the inherent81

limitations of traditional techniques for studying odour capture. The aesthetasc arrays of crabs82

are too small to observe fluid flow directly. Measuring and comparing performance through83

animal experiments in two fluid habitats on a single species is not possible due to various84

physiological and behavioural constraints. As a result, studies of odor capture are generally85

limited to quantifying the performance of a single species (e.g. [5, 19, 7]) or finding correlations86

between morphology and habitat (e.g. [20]).87

We present a novel approach to studying odour capture in different fluid habitats using88

a computational model of odour capture. Previously, odour capture by aesthetascs has been89

simulated by coupling flow and diffusion near the hairs of a single species [13, 14, 21]. In each90

case, the flow fields were either taken from measurements on dynamically scaled models or91

from numerical simulations of a single fluid environment. In all cases, the numbers of hairs92
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were limited to arrays with either three aesthetascs [13, 14] or two aesthetascs [22].93

In this paper, we model the advection and diffusion of a chemical gradient in air and water94

through the aesthetasc arrays of a terrestrial hermit crab (the ruggie hermit crab, Coenobita95

rugosus) and a marine crab (the blue crab, Callinectes sapidus), which closely resemble the96

arrays of marine hermit crabs. Due to the complex arrangement and large number of haphaz-97

ardly arranged aesthetascs of the marine crab (on the order of hundreds), it is not feasible to98

compute unsteady flow fields in 2D or 3D. This is due to the fact that the full Navier-Stokes99

equations must be solved with sufficiently high resolution to capture both the advection and100

diffusion of a chemical gradient through a complex moving boundary (see the Materials and101

Methods and Supplemental Information for a more detailed explanation).102

Given the challenges described above, we combine measured flow fields taken from dynami-103

cally scaled, physical models with numerical simulations of the advection, diffusion, and uptake104

of chemical gradients. By coupling flow fields with diffusion and uptake, we have created a105

standardised odour-capture metric to directly compare the performance of each species in ter-106

restrial and aquatic environments. Quantifying the performance of each species’ hair array in107

both habitats reveals the role of morphology during the process of terrestrialisation. Since theo-108

retical models give us control over each aspect of odour transport (e.g. advection, diffusion, and109

the role of morphology), we can quantify the effect of each of these parameters independently.110

Materials and Methods111

Ideally, we would be able to model and numerically simulate the full Navier-Stokes equations112

with an moving array and the advection and diffusion of a chemical gradient in three dimen-113

sions. Currently, it is not feasible to solve for the three-dimensional fluid flow through about114

200 hairs at intermediate Reynolds numbers where insufficient resolution can dramatically alter115
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the flow near the hairs. Given the intermediate Reynolds number regime (0.1 < Re < 10), it is116

also necessary to solve the full Navier-Stokes equations, and the Stokes or Oseen’s approxima-117

tions are not appropriate. To accurately compute the flow through structures in this sensitive118

Reynolds number regime, extremely small computational grids are needed. Assuming, 20 grid119

points is sufficient in one dimension to accurately resolve the flow between each pair of aes-120

thetascs, approximately 100,000,000 grid points would be needed to resolve the flow in a 2 mm121

by 2 mm by 2 mm cube, based on the spacing of the marine crabs hairs shown in Fig. 2. This122

resolution is prohibitive, even with today’s advanced computational capabilities. We present123

our mixed model, based broadly on Stacey et al. 2002 [13], as a solution to this challenge.124

Particle Image Velocimetry (PIV)125

Velocity fields used in the mathematical model and numerical simulations were measured on126

dynamically scaled physical models of the antennules of the terrestrial hermit crab, Coenobita127

rugosus Milne-Edwards 1836 (representing the terrestrial-crab morphology), and of the blue128

crab, Callinectes sapidus Rathburn 1896 (representing the marine-crab morphology). These129

PIV fields are from previously published studies (marine crab: [12], terrestrial crab: [18]).130

Details of the physical models, the PIV setup, and PIV post-processing can be found therein.131

Fig. 2 contains a brief summary of these methods, and more details can also be found in the132

Supplementary Information (SI) to this paper.133

We simulated flow through the arrays of both species in different fluids using geometrically134

scaled physical models of the flagellum and aesthetasc array. The models were moved at veloc-135

ities, (U), required to match the Reynolds numbers of each fluid (Re = UL/ν) based on the136

aesthetasc diameter (L) and the fluid’s kinematic viscosity (ν = µ/ρ). Fluid velocities were137

measured using particle image velocimetry (Fig. 2 for marine crabs and Fig. 3 for terrestrial138
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crabs). Data were taken within a laser sheet that bisected a section of the flagellum and aes-139

thetasc array. This created a cross section of each aesthetasc, as shown by the white circular140

or elliptical shapes immersed in the velocity fields. Note that in the case of the terrestrial crab,141

there were about 12 ellipse-shaped hairs. For the marine crab there were about 151 circular142

hairs. Velocity fields are scaled to the characteristic velocity of the animal during flicking.143

Mathematical Modelling144

We have developed a mathematical model to couple the experimental velocity data (collected via145

PIV as described above) with the advection, diffusion, and uptake of the odour concentration.146

We have solved147

∂C

∂t
+
∂(uC)

∂x
+
∂(vC)

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
, (1)

for the odour concentration, C(x, y, t) in a given domain Ω, with the steady-state experimental148

velocity fields, (u, v) and diffusion coefficient, D. The details of the numerical method and149

pre-processing of the experimental velocity fields are in the Supplemental Information to this150

paper.151

We have measured the odour capture of each crab by placing aesthetascs in Ω (as located152

in the collection of the PIV data) and observing how much odour was captured by each aes-153

thetasc and removing that odour from the environment as it was captured. Beyond varying the154

environmental conditions, we have considered two initial conditions for the model, a thin and155

a thick filament. We have developed a numerical method to solve this mathematical model for156

the odour concentration captured. The odour concentration presented in Fig. 4 is standardised157

as described below to allow for comparisons between different simulation cases. Further details158

of the model and on the numerical method are given in the SI.159

To determine how the altered flow patterns would impact odour capture, we simulated160
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chemical transport to the aesthetasc using a model of advection, diffusion, and uptake. The161

velocity fields were obtained from the previously described experimental measurements. A162

no-slip boundary condition was enforced at the boundary of each aesthetasc. The diffusion163

coefficients, (Dair, Dwater), were chosen to reflect the diffusivity of common odourants in air164

or water. The initial condition of the chemical gradients was chosen to model the natural165

conditions of odourants. These choices included ‘thin’ filaments for water (a narrow filament166

that extends the vertical distance of the domain) and ‘thick’ filaments for air (a filament that167

extends beyond the domain in the horizontal axis) (see Supplemental Information for details).168

For each time step, odourant that diffuses into the aesthetasc is recorded and removed.169

Total concentrations captured were standardised by the maximum initial concentration of the170

filament and the total circumference of the aesthetascs. Each set of conditions was repeated171

using three unique sets of experimental velocity fields that represented independent replicates172

of the arrays used in antennule flicking.173

With this model, we were able to simulate the environmental conditions reflective of either174

air or water in two parts: 1) using a diffusion coefficient of a typical molecule in either air (Dair)175

or water (Dwater), and 2) using experimental velocity fields for the downstrokes and return176

strokes for antennules flicking observed at Reynolds number in air (Reair) or water (Rewater).177

Values of the Reynolds numbers used can be found in Tables 1 (for Callinectes sapidus) and178

2 (for Coenobita rugosus) in the SI. We were also able to pair non-matching environmental179

conditions (e.g. diffusion of air (Dair) with the velocity fields of water (Rewater)) to investigate180

the effect of each on odour capture.181

For each marine crab simulation, the downstroke velocity field is applied for 0.0152 s, then182

the return stroke velocity field is applied for 0.0248s, and then the velocity is set to 0 for a rest183

period of 0.24 s. For the terrestrial crab simulations, the downstroke velocity field is applied184
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for 0.0782 s and the return stroke velocity field is applied for 0.0603 s. The diffusion coefficient,185

D, depends on whether the crabs are in water or in air. Values are given in Tables 1 and 2.186

In order to make the simulations directly comparable between fluids and morphologies,187

results were standardised in two ways. First, we divided the raw concentration captured by the188

maximum concentration of the initial condition for each simulation (C∞), to find the fraction of189

chemical captured (C/C∞). Second, we divided the fraction of chemical captured by an effective190

capture area of each array, d, described below. When both standardisations are performed, the191

adjusted captured concentration is reported as C/(C∞ · d).192

Since each species’ array had different areas of contact with odour-containing fluid, we stan-193

dardised this surface by defining an effective capture area of the array as sum of the diameters194

of all aesthetascs that captured an unadjusted concentration of at least 1 × 10−10. For the ter-195

restrial crabs, every hair caught at least this much concentration for every case, so the effective196

capture area was the sum of the diameters of all aesthetascs. For marine crabs, simulations197

yielded different effective captures areas as some aesthetascs in each simulation captured no198

chemical (Fig. 4). The number of hairs capturing a minimum concentration was multiplied by199

the aesthetascs’ circumference to find the effective capture area.200

Statistical Analysis201

Values of the amount of chemical captured are the result of three replicate runs (n = 3) using202

three replicate sets of PIV flow fields (downstroke and return stroke data). In Fig. 5, all values203

are reported with 95% confidence intervals. For comparisons with non-overlapping confidence204

intervals, we assumed that the comparisons were significant at α = 0.05 level. For comparisons205

with overlapping confidence intervals, we tested each using a double-tailed Welch’s t-test with206

a Bonferroni correction. The t-statistic and adjusted p values are reported with each of these207

9



comparisons and treated as significant at α = 0.05. All statistical analyses were completed in208

R using the basic statistics package [23].209

Results210

Changing fluids alters flow patterns for marine but not terrestrial crabs211

For the marine crab in water, fluid flow within the array demonstrates the classic flow-no flow212

pattern of marine malacostracan sniffing reported elsewhere [7, 12, 16, 19]. Flow is relatively213

high during the downstroke and near zero during the return stroke. This can be seen by com-214

paring the velocity magnitudes within the array in the bottom left and bottom right panels in215

Fig. 2. This pattern is highly dependent on the Reynolds number and the spacings between aes-216

thetascs. Previous studies have found that decreasing the Reynolds number of the downstroke217

below approximately 0.6 dramatically reduces flow within the array [7, 12].218

During terrestrialisation, the fluid in which the aesthetasc array is immersed changes from219

water to air. Although our models of the downstroke of a marine crab in air are set to the same220

speed as in water, the Reynolds number decreases by a factor of 16 due to the fact that the221

kinematic viscosity of air is higher than water. As a result, the downstroke Reynolds number222

drops below the value that allows flow within the array, and the flow-no flow pattern disappears.223

Air flow within the array during both the downstroke and return stroke are near zero (top two224

panels of Fig. 2).225

For the terrestrial crab, flow within the array indicates the absence of the flow-no flow226

pattern in air [18]. Flow within the aesthetasc array remains low for both the downstroke227

and return stroke (top two panels of Fig. 3). Remarkably, fluid flow within the array is also228

near-zero for terrestrial crabs flicking in water (bottom two panels of Fig. 3), despite the fact229
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that the Reynolds number increases by an order of magnitude. In summary, the configuration230

of the terrestrial crab array does not allow significant flow within the array for either stroke or231

fluid medium, suggesting that diffusion dominates over advection for odour capture.232

Simulating odour capture reveals antennule specialisation233

To compare the performance of the crabs in both environments and with both initial conditions,234

eight simulations were performed for each species. In Fig. 5, panels A and B show the results235

for a thin filament, and panels C and D show the results for a thick filament. The simulations236

performed using Dair are shown in red, and those performed with Dwater are shown in blue.237

All solid lines represent simulations that use the morphology of the marine-crab array, and238

the dashed lines show results for the terrestrial-crab array. Panels A, C, and D use the Re239

appropriate to the fluid medium (Reair is shown in red and Rewater is shown in blue) except240

for panel B where the Re are swapped. In this panel, Dair and Rewater are shown in red, and241

Dwater and Reair are shown in blue. Finally, the flick durations (T ) are species specific in panels242

A, B, and C and are swapped for D.243

Each crab captures a greater fraction of available odourant in their native fluid environ-244

ments. In air, terrestrial crabs (Reair, Dair) capture 2.0 times more odourant than marine245

crabs (Reair, Dair) when presented with a thin filament and 2.9 times more when presented246

with a thick filament (Figs. 5A and 5C, red lines). In water, marine crabs (Rewater, Dwater)247

capture 6.8 times more concentration than terrestrial crabs (Rewater, Dwater) for a thin filament248

and 17 times more for a thick filament (Figs. 5A and 5C, blue lines). Further, the flow-no flow249

pattern is highly beneficial for marine crabs. The benefit of water flow within the array is so250

great that the performance of marine crabs in air and water is comparable when the capture251

area is controlled despite several orders of magnitude difference in diffusivity (Fig. 5A, solid252
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lines).253

If the diffusivity of air (Dair) is used, marine crab arrays with greater fluid penetration254

(Rewater) capture more odourant than simulations with limited fluid penetration in the array255

(Reair) (Figs. 5A and 5B, solid red lines). When diffusivity of water (Dwater) is used, marine256

crabs in flows with less fluid penetration during the downstroke (Reair) capture less odour than257

in simulations with more fluid penetration (Rewater) (Figs. 5A and 5B, solid blue lines). Note258

that this difference is not, however, significant (t = 3.4, adjusted p = 0.33).259

The transition to Reynolds number of air affects the distribution of odour capture in the260

marine crab’s array. In water, fluid penetration into the marine crab array results in a large261

number of aesthetascs participating in odour capture at a greater depth in the array (Fig. 4A).262

When moved to air, fewer aesthetascs capture odours, and these aesthetascs are restricted to263

the very edge of the array (Fig. 4C).264

In contrast, odour capture for terrestrial crabs in air does not depend upon changes in flow265

within the array. For both air and water, odour capture is restricted to the outer edges of its266

array (Figs. 4B and 4D). When the diffusion coefficient is controlled, total odour capture rates267

are also not significantly different for flicking with the Reynolds numbers of air or water (for268

Dair: Figs. 5A and 5B, dashed red lines; t = 0.95, adjusted p = 1; for Dwater: Figs. 5A and 5B,269

dashed blue lines; t = −0.99, adjusted p = 1).270

The same morphology that gives terrestrial crabs an advantage in air negatively impacts the271

odour-capture performance in water due to the change in diffusivity and the lack of a flow-no272

flow pattern. Since the diffusion coefficient is smaller in water and no water penetrates the273

array to bring odour molecules close to the aesthetascs, odour capture from thin filaments in274

water is only a small fraction of that captured in air (Fig. 5A, blue and red dashed lines). The275

reduction of odour capture in water is also found for thick filaments (Fig. 5C, dashed blue and276
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red lines).277

The differences in fluid flow and diffusion coefficients are not the only features of the animals’278

environment which change between water and air. High-concentration odour filaments, created279

by turbulent mixing of fluid, differ in many ways between air and water. One feature is the size280

of these filaments; odour filaments in air are much wider than those of water. Consideration281

of this feature further enhances the fluid-specific benefits of each aesthetasc-array morphology.282

When flicking through a thick filament, terrestrial crabs capture 123 times more odourant in283

air than they do in water (Fig. 5C, dashed red and blue lines). The difference in performance284

between air and water for a thin filament is smaller than the difference in performance for a285

thick filament, being only about one order of magnitude (Fig. 5A, dashed red and blue lines).286

When comparing Figs. 5C and 5D, the duration of the flick (T ) was altered from the287

biologically relevant case (long flick for terrestrial crabs, short flick for marine crabs) to the288

swapped case (long flick for marine crabs, short flick for terrestrial crabs). The terrestrial crab’s289

longer duration of flicking seems to account for the increased odour capture in thick filaments290

using the properties of both air and water. Increasing the duration of the marine crab’s flick to291

match that of a terrestrial crab’s flick eliminates the performance difference between the two292

morphologies, as can be shown by comparing each species in Figs. 5C and 5D. Marine crabs293

have a slight advantage in air over terrestrial crabs (Dair and Reair) when the flick duration is294

increased (increase of 60%) that is significant (Fig 5C, dashed red line and Fig 5D, solid red295

line; t = −7.74, adjusted p = 0.04).296

Discussion297

Both fluid-flow patterns and diffusion impact the ability of decapod antennules to capture298

odours from surrounding fluid. For these simulations, both marine and terrestrial crabs have299
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Pe ≈ 1000 in water and Pe ≈ 0.1 in air (see Tables 1 and 2 for Péclet number calculations).300

These indicate that each species, in addition to experiencing very different flows within their301

aesthetasc arrays, naturally inhabits a drastically different transport regime than the other.302

Terrestrial hermit crabs have reduced aesthetasc-array features and, as a result, lack the303

flow-no flow pattern demonstrated by marine crabs in water. These changes confer a perfor-304

mance benefit in transport regimes in which diffusion is dominant (Pe < 1). However, when305

operating in a transport regime where advection is important (Pe > 1) as in water, loss of306

the flow-no flow pattern has rendered terrestrial hermit crabs all but nonfunctional in water307

when compared to marine crabs. The flow patterning exhibited by marine crabs is so effective308

in water that it rivals the amount of odourant capture by terrestrial crabs in air, despite the309

diffusion coefficient of water being several orders of magnitude less than that of air.310

Our results also suggest that there are heavy selective pressures that constrain the morphol-311

ogy and kinematics of the antennules of malacostracan crustaceans in water. Terrestrialisation312

of coenobitid crabs (terrestrial hermit crabs in the genus Coenobita and the robber crab, Birgus313

latro) results in the loss of the flow-no flow pattern. This adaptation allows for superior odour-314

capture performance in air as compared to marine crabs but would result in a devastating drop315

in performance in water. Since the terrestrial crab’s antennules exist in a diffusion-dominated316

transport regime and flow-no flow pattern is no longer necessary in air, the antennules may be317

reduced without a loss in performance. The longer duration flick in air is also advantageous, and318

we see that terrestrial crabs do, in fact, flick for longer times [24]. These differences are further319

augmented when the initial conditions of the odourant are reflective of odour distributions in320

air (e.g. thick filaments).321

The life history of terrestrial hermit crabs also reflect these differences in performance.322

Hermit crab larvae initially live in the water column where they are dispersed by currents. At323
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this stage, their antennule morphology mimics marine species [25, 26]. As they develop, they324

settle near land and undergo metamorphosis [25, 27]. During post-settlement metamorphosis,325

the juveniles emerge from the sea to live permanently on land and exhibit the adult antennule326

morphology [27, 28, 26].327

Additional pressures, such as evaporation, may also play a role in the morphology of the328

terrestrial hermit crab array. Ghiradella et al. [17] suggested that a reduction in the area of329

permeable cuticle in the aesthetasc array may limit water loss. The area of permeable cuticle330

would be lowered in the case of the shortened aesthetascs of the terrestrial hermit crab, giving331

an advantage to this reduced morphology in air. Their conjecture was further supported by332

other studies of coenobitid crabs [29, 30]. Evaporative water loss in air may select for reduced333

arrays, while the need for a flow-no flow pattern in water may drive arrays towards a lengthened334

morphology.335

These results have implications for other terrestrialisation events in decapod crustaceans,336

the group which includes lobsters, crayfish, crabs, and shrimp. For example, terrestrial species337

within the Brachyura (an infraorder of ‘true’ crabs that does not include hermit crabs) also338

exhibit changes in antennule morphology. The changes to antennules within the Brachyura are339

consistent with the reduced pressures of sniffing in water and include reduced aesthetasc length340

and number, lack of flicking, and reduced brain area dedicated to aesthetasc-mediated olfac-341

tion [31]. It is unclear why the hermit crabs, a lineage of anomuran crabs, successfully adapted342

antennules for olfaction in air while no lineages within the Brachyura have done so. Similarly,343

most other terrestrialised lineages in the Malacostraca (the largest class of crustaceans) [32, 33]344

have not adapted antennules for olfaction in air.345

Zooming out from malacostracans, the transition of hexapods (the group containing insects)346

to land was followed by one of the largest radiations in the history of life. Chemosensory sen-347
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silla on the second antennae of insects exhibit significant morphological diversity for capturing348

odours in air [34], and many features common to insect sensilla are also found convergently in349

coenobitids, such as housing basal bodies and cilia within a lymph space inside the flagellum350

and similar electroantennographic responses to airborne odours [29]. It is possible that the351

transition from a low Péclet number system, dominated by diffusive transport, removed the352

constraints associated with high Péclet number systems such as those associated with discrete353

odour sampling in marine crabs. This shift in the relative importance of advection and diffusion354

potentially allowed diverse sensory morphologies to develop in insects.355

In addition to evolutionary insights, our results suggest that the open, hair-like design of356

crabs’ chemosensory arrays are an effective strategy for chemical sensing in both water and air357

without the constraints of drawing fluid through an enclosed space such as mammalian sinuses.358

The hair-like aesthetascs of marine crabs capture a large fraction of odourant in air and water,359

but the performance of the array was highly sensitive to the arrangement, size, and shape of360

the aesthetascs within its array as well as the kinematics with which the array was moved. Here361

we have shown that both sensitivity of the chemosensory structure and the kinematics of the362

array must be considered to create an effective biomimetic sensor.363
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Table 1: Values used for creating velocity fields using dynamically scaled physical models

of the terrestrial hermit crab, Coenobita rugosus. *Using Re = UL/ν, aesthetasc diameter

L = 1.5 × 10−5m [24]. † Using Pe = UL/D, aesthetasc diameter L = 1.5 × 10−5m [24]

Parameter Air Water

Diffusion coefficient, D (m2s-1) 6.02 × 10−6 7.84 × 10−10

Kinematic viscosity, ν (m2s-1) 8.50 × 10−6 1.05 × 10−6

Downstroke speed, U (m s-1) 0.063 0.063

Actual Downstroke Re* 0.11 0.90

Modelled Downstroke Re* 0.098 0.77

Downstroke Pe† 0.16 1,200

Return stroke speed, U (m s-1) 0.11 0.11

Actual Return stroke Re* 0.19 1.6

Modelled Return stroke Re* 0.21 0.77

Return stroke Pe† 0.27 2,100
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Table 2: Values used for creating velocity fields using dynamically scaled physical models of the

marine blue crab, Callinectes sapidus. *Using Re = UL/ν, aesthetasc diameter L = 9.0×10−6m

[12]. †Using Pe = UL/D, aesthetasc diameter L = 9.0 × 10−6m [12]

Parameter Air Water

Diffusion coefficient, D (m2s-1) 6.02 × 10−6 7.84 × 10−10

Kinematic viscosity, ν (m2s-1) 8.50 × 10−6 1.05 × 10−6

Downstroke speed, U (m s-1) 0.17 0.17

Actual Downstroke Re* 0.18 1.5

Modelled Downstroke Re* 0.20 1.6

Downstroke Pe† 0.25 2,000

Return stroke speed, U (m s-1) 0.061 0.061

Actual Return stroke Re* 0.060 0.52

Modelled Return stroke Re* 0.070 0.57

Return stroke Pe† 0.091 700
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Figure 1: Top left: adult terrestrial hermit crab Coenobita rugosus with black box around

antennule, photo credit: J. Poupin, Moorea Island, photo in [35]. Bottom left: adult marine

crab Callinectes sapidus with black box around antennule, photo credit: NOAA Fisheries Image

Gallery [36]. Middle: Schematic diagrams of the antennules of the terrestrial hermit crab (top)

and the marine crab (bottom). Right: schematic diagram of individual aesthetascs of terrestrial

hermit crab (top) and marine crab (bottom) after Fig. 29 in [17]; a - area of thinned cuticle

able to accept odourants, b - area of thickened, impenetrable cuticle around the aesthetasc, c -

dendrite branches, d - cuticle, e - sheaths.
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Figure 2: Diagram of particle image velocimetry (PIV) setup and results for the marine crab

dynamically scaled physical model. Left: The model was dragged through a tank of oil with

reflective marker particles in the direction indicated by the arrows. The camera was mounted

above the model antennule and captured images at 60 fps. Particle movements were illuminated

in a 2D plane created by the laser. Velocities were reconstructed from consecutive image pairs

using MatPIV v1.6.1 [37] (for more details, see SI and [12, 18]). Right: PIV results. Top left -

downstroke in air; top right - return stroke in air; bottom left - downstroke in water; bottom

right - return stroke in water. Aesthetascs are white outlined in black, the flagellum of model

is shown in white and lies to the left of each vector field.
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Figure 3: Diagram of PIV setup for the dynamically scaled physical model of the terrestrial

hermit crab antennule. Left: the camera mounted above the model antennule shows the capture

area of the 2D plane created by the laser where velocity vector fields were measured. Right: PIV

results. Top left - downstroke in air; top right - return stroke in air; bottom left - downstroke

in water; bottom right - return stroke in water.
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Figure 4: Normalised odor concentration absorbed by individual aesthetascs where size and

color correspond to total amount for the marine-crab array (left) and terrestrial-crab array

(right) in a thin odour filament. A,B: flicking in water (Rewater, Dwater); C,D: flicking in air

(Reair, Dair). Yellow represents high odour concentrations and blue represents low concentra-

tions.
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Figure 5: Total capture of available odour concentration (C/(C∞ · d) in mm-1) reported with

95% confidence intervals versus simulation time (in s) by aesthetascs flicking through thin (A,B)

and thick (C,D) odour filaments. A: For marine crabs (solid lines) and terrestrial crabs (dashed

lines) in air (Reair, Dair; red lines) and water (Rewater, Dwater; blue lines). B: For marine crabs

(solid lines) and hermit crabs (dashed lines) with altered Reynolds numbers: Rewater, Dair

(dark red) and Reair, Dwater (dark blue). C: For marine crabs (solid lines) and terrestrial crabs

(dashed lines) in air (Reair, Dair; red lines) and water (Rewater, Dwater; blue lines). (continued

on next page)
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Figure 5: (continued) D: For marine crabs (solid lines) and terrestrial crabs (dashed lines) in air

(Reair, Dair; dark red) and water (Rewater, Dwater; dark blue) with reversed flick durations (T ):

terrestrial-crab morphology flicks with duration of marine crab and marine-crab morphology

flicks with duration of terrestrial crab. In all plots, grey, dotted, vertical line gives duration of

marine crab downstroke and black, dotted, vertical line gives duration of marine crab flicking.

Grey, solid, vertical line gives duration of terrestrial crab downstroke and black, solid, vertical

line gives duration of terrestrial crab flicking. Movies of simulations can be found in the SI.
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