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Abstract

A major transition in the history of the Pancrustacea was the invasion of several lineages of

these animals onto land. We investigated the functional performance of odor-capture organs,

antennae with olfactory sensilla arrays, through the use of a computational model of advection

and diffusion of odorants to olfactory sensilla while varying three parameters thought to be

important to odor capture (Reynolds number, gap-width-to-sensillum-dameter ratio, and angle

of the sensilla array with respect to oncoming flow). We also performed a sensitivity analysis

on these parameters using uncertainty quantification to analyze their relative contributions to

odor-capture performance. The results of this analysis indicate that odor capture in water and

in air are fundamentally different. Odor capture in water and leakiness of the array are highly

sensitive to Reynolds number and moderately sensitive to angle, whereas odor capture in air

is highly sensitive to gap widths between sensilla and moderately sensitive to angle. Leakiness

is not a good predictor of odor capture in air, likely due to the relative importance of diffu-

sion to odor transport in air compared to water. We also used the sensitivity analysis to make

predictions about morphological and kinematic diversity in extant groups of aquatic and terres-

trial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within

the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and
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little-to-no animal-induced currents.

Keywords: olfaction, sensilla, insect, computational modeling, fluid dynamics, sniffing

1 Introduction

1.1 Odor capture in the Pancrustacea

Collecting information contained in chemical stimuli, or odors, is a primary way for an animal

to interface with its external environment. Animals, including crustaceans and insects, routinely

use odors to find food (Rittschof and Sutherland, 1986; Kamio and Derby, 2017; Solari et al,

2017), symbiont hosts (Ambrosio and Brooks, 2011), to recognize individual conspecifics (Gherardi

et al, 2005; Gherardi and Tricarico, 2007), to mediate reproduction (Gleeson, 1980), and to avoid

predators (Diaz et al, 1999; Pardieck et al, 1999). Odors can illicit behaviors by acting as signals

or cues, and these behaviors can be either innate or learned (Derby and Weissburg, 2014).

An important development in the Pancrustacea or Tetraconata, a group including crustaceans

and insects, was the invasion of land. Within the Pancrustacea, several lineages evolved inde-

pendently to live in terrestrial habitats, including Isopoda, Amphipoda, Coenobitidae (terrestrial

hermit crabs and Birgus latro) (Greenaway, 2003; Hansson et al, 2011; Harzsch and Krieger, 2018).

With this change in habitat came a change in the physical properties of the fluid surrounding these

animals. Since odor capture and the nature of the odor signal created by environmental flows are

both dependent on the physical characteristics of the fluid, the nature of odor capture fundamen-

tally changed between water and air. Has this transition to a terrestrial environment influenced the

morphology of odor-capture structures? And can we detect a functionally important signal in the

diversity of odor-capture structures that reflect the differences imposed by changing the physical

properties in which these structures operate?

1.2 Fluid dynamics of odor capture

From odor source to animal, the fluid dynamics of environmental flows create complex odor plumes,

discontinuous series of high-concentration odor pulses, that animals must interpret to navigate

(Murlis et al, 1992; Weissburg, 2000; Koehl et al, 2001; Dickman et al, 2009; Webster and Weissburg,

2009; Reidenbach and Koehl, 2011). Animals must capture the information contained within these

complicated plumes along with fluid-dynamic cues in order to navigate to the source (Moore et al,
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1991; Atema, 1995; Page et al, 2011a,b; Weissburg, 2011; Weissburg et al, 2012). Odor capture is

the process by which odorants are extracted from the environmental fluid, and it is an important

step in olfaction as a whole (Schneider et al, 1998; Kepecs et al, 2006; Moore and Kraus-Epley,

2013). Typically, specialized structures interact with moving fluid, produced by drawing air into a

cavity (in the case of mammals) or moving an external chemosensory surface through a fluid (in

the case of many crustaceans which use external arrays of hair-like sensilla mounted on antennae).

Odor capture by sensilla arrays depends on the physical interactions between the sensilla array

and fluid movements, created by the animals and by environmental flows. Environmental fluid

movement, such as wind or water currents, creates odor plumes by dispersing dissolved odorants

from the source into the environment. Odorant molecules that dissolve from a source into the

surrounding fluid are pulled by turbulent mixing to create high concentration filaments of odor.

At large time scales, odors appear to have a Gaussian distribution (averaged across space and

time), but at small time and spatial scales (comparable to those experienced by small animals such

as insects and other crustaceans) are complicated patterns of odor filaments with varying widths,

frequencies, and concentrations (Murlis et al, 1992; Weissburg, 2000; Dickman et al, 2009; Bingman

and Moore, 2017). Animals use this information to interpret the location of odor sources (Cardé

and Willis, 2008).

The characteristics of an odor plume vary with the properties of the environmental fluid (air

or water) and an odorant’s ability to diffuse in that medium. A fluid’s density (ρ) and dynamic

viscosity (µ) will affect the size and frequency of turbulent eddies that create odor filaments at the

source, producing relatively larger, less frequent eddies in water than in air (Murlis et al, 1992;

Weissburg, 2000; Webster and Weissburg, 2009; Weissburg, 2011). The rate of diffusion of an

odorant, quantified by the diffusion coefficient (D), is typically several orders of magnitude smaller

in water than in air. This creates odor filaments that are highly concentrated and thin in water

(where diffusion is slower) and relatively wider and less concentrated in air (where odorants diffuse

more rapidly) (Murlis et al, 1992; Weissburg, 2011). These create distinct patterns of odorant

signals at the size and time scale of a sensilla array (Reidenbach and Koehl, 2011; Bingman and

Moore, 2017).

In addition to environmental fluid flow, many aquatic and some terrestrial crustaceans and

insects waive, or flick, their antennal olfactory arrays to generate fluid movement during odor

capture. This fluid movement serves many purposes: it introduces a new sample of fluid close to

the sensory structure and moves previously sampled fluid away (Schmidt and Ache, 1979); it thins
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the attached layer of fluid around the solid sensory structure (the fluid boundary layer) so that

molecular diffusion acts over a shorter distance (Stacey et al, 2002; Koehl, 2011); and it increases

the temporal and spatial sampling of the fluid environment, thereby increasing the probability of

detecting rare or discontinuous odor signals (Kepecs et al, 2006; Koehl, 2006; Cardé and Willis,

2008).

The amount fluid penetration, or leakiness, in an array of sensilla depends on the interactions

of the boundary layers around the individual sensillum and the distance between the sensilla. The

relative thickness of the boundary layer depends on the Reynolds number (Re):

Re =
Uρl

µ
(1)

where l is a characteristic length scale (such as the diameter of a sensillum) and U is the fluid

speed relative to the object. Higher flow speeds result in higher Re and thinner boundary layers.

Cheer and Koehl (1987a,b) described the relationship between Re and gap-width-to-sensillum-

diameter ratio (Gw) between sensilla in the critical ranges that crustacean sensilla arrays occupy

(0.01 < Re < 10 and Gw). When Re is low or sensilla are spaced further apart, individual boundary

layers do not interact and fluid flow is able to penetrate the array, bringing odor molecules very close

to the sensillum surfaces, where diffusion takes odor molecules the final distance to the sensillum’s

surface. If flow is slow enough or sensilla are close together, individual boundary layers begin to

overlap and drive flow around the array (as opposed to through it), restricting access of odorant

molecules to the inner sensory surfaces of the array (Stacey et al, 2002; Schuech et al, 2012).

Air and water differ in terms of both fluid density (ρ) and viscosity (µ), which will affect the

leakiness of the same array in each fluid. Air is 850 times less dense than water and its dynamic

viscosity is 59 times lower, leading to Re being 15 times lower when an array operates in air

as opposed to water. Waldrop and Koehl (2016) calculated that the same antennal array would

experience a dramatic decrease in leakiness when moved from water to air that could affect odor-

capture performance.

The delivery of odorant molecules to sensory structures depends not just on fluid movement,

but also on the rate of diffusion in the fluid. Odor capture also relies on the scaling of advective

flows versus the rate of diffusion. The Péclet number (Pe) describes the relative importance of

advection (bulk fluid movement) to diffusion:

Pe =
Ul

D
. (2)
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For Pe > 1, advection dominates transport of odorant molecules to a structure, whereas for Pe < 1,

diffusion dominates transport.

Typically, molecules will have much higher diffusion coefficients in air compared to water due

to the lower density of air. As a result, Pe for the same molecule can be 100 to 10,000 times lower

in water compared to air. For a sensillum array similar size to the antennae of marine crustaceans

responding to an odorant in air and water, Pe can be over 1 in water and below 1 in air (Waldrop

and Koehl, 2016; Waldrop et al, 2016). This suggests by simply changing the fluid in which the

sensillum array is operating there may be a major shift in the dominant form of mass transport

to the array, potentially altering the selective pressures on the array’s morphology (Mellon and

Reidenbach, 2012).

1.3 Diversity in antennal functional morphology

Many species within the Pancrustacea have sensory structures that consist of external arrays of

sensillum-like sensilla concentrated on antennae that protrude away from the head (Fig. 1). The

types of sensilla vary, and as a result antennae can provide a range of sensory modalities, including

olfaction, gustation, and mechanosensation.

The olfactory hardware of malacostracan crustaceans and insects are similar (Harzsch and

Krieger, 2018). The hair-like olfactory sensilla of insects and malacostracan crustaceans consist of

a hollow cylindrical tube of cuticle innervated by olfactory sensory neurons, which project outer

dendritic segments into the body of each sensillum (Hallberg and Skog, 2011). The cuticle in

malacostracan crustaceans is permeable to a variety of chemicals and ions (Gleeson et al, 2000a,b),

and the cuticle of insect sensilla is impermeable with pores (Zacharuk, 1980; Keil and Steinbrecht,

1984). Receptors on the outer dendritic segments generate action potentials when exposed to

odorants, which are then relayed to the olfactory bulb of the brain. The organization of the

olfactory areas of the brain are so similar, Harzsch and Krieger (2018) suggests they reflect a deep

homology between malacostracan crustaceans and insects.

The length, diameter, flexibility, number, and arrangement of olfactory sensilla vary widely

across the Pancrustacea. Malacostracan crustaceans possess arrays of specialized olfactory sensilla

called aesthetascs on their first antennae (antennules) (Fig. 1A–D). Antennules can bear arrays

which can range from single lines of short, stiff aesthetascs per segment (Fig. 1 A,C) (Derby,

1982; Grünert and Ache, 1988; Goldman and Patek, 2002) to dense plumes of long aesthetascs

(Ghiradella et al, 1968; Snow, 1973; Gleeson, 1980). Coenobitid crabs possess aesthetascs that
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Figure 1: Select antenna morphologies of the Pancrustacea. A–D: aquatic crustaceans (photos

courtesy of J. Poupin & the CRUSTA Database (Legall and Poupin, n.d.)), insets highlight first

antennae and white arrows indicate aesthetasc arrays. E–F: insects ( c© Alex Wild, used with

permission) with prominent antennae. A: Spiny lobster, Panulirus argus, B: banded porcelain crab,

Petrolisthes galathinus, C: red Hawaiian reef lobster, Enoplometopus occidentalis, D: aiyun-tenaga-

ohgigani, Chlorodiella laevissima, E: hollyhock weevil, Rhopalapion longirostre, F: red imported fire

ant, Solenopsis invicta, G: cecropia silkmoth, Hyalophora cecropia.
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are shorter, blunter, and more densely packed than their closest relatives (marine hermit crabs)

(Ghiradella et al, 1968; Stensmyr et al, 2005; Hansson et al, 2011).

Insects possess several types of olfactory sensilla, some specialized to specific odorants (Zacharuk,

1980). Antennae can contain one or more types of these sensilla in a variety of different arrange-

ments which can depend on species, sex, and ontogenetic stage (Fig. 1E–F) (Hallberg and Hansson,

1999; López et al, 2014). Arrangements of sensilla range from simple, short arrays of sensilla pro-

truding from the antenna (Fig. 1E,F) to silkmoth antennae which bear dense arrays of specialized

sensilla sensitive to sex pheromones (Fig. 1G).

Due to the importance of both fluid movement and diffusion in odor capture, it is unclear to

what extent morphological differences in antennal arrays, either within taxa or across taxa, lead to

differences in functional performance. Many studies have examined fluid flow through aesthetasc

arrays of aquatic and terrestrial malacostracan crustaceans as a proxy for odor capture, focusing on

the role of Re and Gw in sensilla arrays (Mead et al, 1999; Reidenbach et al, 2008; Waldrop et al,

2015a,b). Crayfish exhibit longer aesthetascs with wider gap widths in areas of low flow (Mead,

2008). Terrestrial hermit crabs exhibit a reduction in aesthetasc length and density compared to

marine crabs (Ghiradella et al, 1968; Snow, 1973; Mellon and Reidenbach, 2012), and this likely

leads to increased odor capture in air (Waldrop et al, 2016). There are other reductions of aesthetasc

and brain features in terrestrial or semi-terrestrial brachyruan crabs, making it unlikely that these

animals engage in olfaction in air (Krieger et al, 2015). To date, there has been no systematic study

of how common features of antennal array morphology affect odor-capture performance across the

Pancrustacea.

1.4 Computational modeling and evolution

Understanding diversity in sensilla-array morphology and its interaction with the environmental

flows in part requires understanding performance over a wide variety of antennal morphologies

and flow conditions. There are a large number of parameters associated with the morphology

of the arrays and the kinematics of movement, such as the number of sensilla, spacings between

sensilla, diameters of sensilla, their position relative to the central support structure. Additionally,

there are a large number of parameters based on environmental conditions that will also alter the

performance of the array, including Re and Pe numbers.

Computational models represent a cheap, efficient way at evaluating a relevant performance

metric over a very large range of existing and theoretical sensilla-array morphologies. Coupled
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advection-diffusion studies are better suited to evaluate functional performance of an array during

odor capture than examining leakiness alone, since it takes into account the role of diffusion rates

into capture. A wide range of morphologies and environmental conditions can be mimicked through

modeling and the subsequent impact on odor-capture performance measured.

Variation in these parameter inputs, the raw material on which natural selection works, will

affect the performance outputs in complex ways. Altering single variables could have oversized

effects on performance or no effects at all. Systems with few degrees of freedom can have several

combinations of inputs that produce the same performance (“many-to-one mapping”) (Wainwright,

2007; Anderson and Patek, 2015). Making sense of the holistic effects of input variation on per-

formance output is a key step in determining how functional performance impacts the creation of

morphological diversity, despite being often overlooked in many studies (Patek, 2014).

However, the lack of analysis tools that can quantitatively describe parameter effects on com-

putational models limits these models’ ability to inform studies of morphological diversity and

evolution. In this study, we use uncertainty quantification to quantify the relative effects of change

on performance and provide sensitivity analyses for individual parameter and parameter combi-

nations. Using these sensitivity analyses will allow us to assess which parameters are relatively

more sensitive than others and then make specific predictions about what exists in corresponding

natural systems. Parameters that are very sensitive to change can either be highly constrained and

show little diversity in morphology across clades or be the basis of very fast morphological change

within a clade (Anderson and Patek, 2015; Muñoz et al, 2017). Conversely, parameters that are

not very sensitive could be free to diversify and show high levels of morphological variation without

significant sacrifices to functional performance.

1.5 Study Objectives

In this study, we have created a computational model of advection and diffusion to study the impact

of variation in morphological parameters on the functional performance of olfactory sensillum arrays

in differing fluid environments. This model uses an idealized antennal sensillum array, representing

olfactory sensilla, to assess the sensitivity of three morphological and kinematic parameters: the Re

of the fluid movement relative to the sensilla, the gap-to-diameter ratio of the sensilla (Gw), and

the angle of the array to the direction of oncoming flow (θ). This array is tested in two chemical

fluid environments – air and water – using a typical odorant filament and diffusion coefficient

characteristic of each environment.
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With this model, we will address the following questions:

1. Do features of flow (average speed and shear rates around sensilla, leakiness) predict odor-

capture performance?

2. Are there differences in how parameters (Re, Gw, θ) affect odor-capture performance in air

and water?

3. Can sensitivity analyses generate hypotheses to predict patterns of morphological diversity

in extant groups, and are these hypotheses different for aquatic and terrestrial groups within

the Pancrustacea?

2 Materials and Methods

2.1 Computational Model

2.1.1 Constraint-based Immersed Body Method

In order to simulate fluid flow around the boundaries of each sensillum and antenna, we used the

constraint-based immersed body method (cIB) (Sharma et al, 2005; Bhalla et al, 2013; Kallemov

et al, 2016), a version of the regular immersed boundary method (IBM). The IBM, developed by

Peskin (Peskin, 2002), fully couples the motion of an elastic boundary with the resulting fluid flow.

In the IBM, the incompressible Navier-Stokes equations for fluid flow are solved on a Eulerian

grid using an external forcing term (F (x, t)) modeling the force on the fluid from the Lagrangian

boundary:

ρ(ut(x, t) + u(x, t) · ∇u(x, t)) = −∇p(x, t) + µ∇2u(x, t) + F(x, t) (3)

∇·u(x, t) = 0 (4)

where u(x, t) is the fluid velocity, p(x, t) is the pressure, ρ is the fluid density, and µ is the dynamic

viscosity of the fluid. The independent variables are the time t and the position x.

The immersed boundary is modeled using Lagrangian points. The interaction equations between

the fluid Eulerian grid and the boundary Lagrangian points are given by:

F(x, t) =

∫
f(s, t)δ (x−X(s, t)) ds (5)

Xt(s, t) = U(X(s, t)) =

∫
u(x, t)δ (x−X(s, t)) dx (6)
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where X(s, t) gives the Cartesian coordinates at time t of the Lagrangian point labeled by parameter

s and f(s, t) is the force per unit length applied by the boundary to the fluid. In these equations,

the two-dimensional delta function, δ(x−X(s, t)), is used to go between the Lagrangian variables

and the Eulerian variables. As stated above, eq. 5, gives the force from the boundary on the fluid

grid. Eq. 6 gives the velocity of the boundary, Xt(s, t) = U(X(s, t)), due to the fluid flow.

In the cIB, stead of treating each point separately (as is the case for the regular IBM), the

motion of the entire object represented by points is constrained and prescribed. The additional

force due to the existence of this body is added to eq. 4 for areas inside the internal volume created

by the series of points. The object boundary does not required connections of springs and beams

or meshing, making it more computationally efficient.

We used an implementation of this method in the Immersed Boundary with Adaptive Mesh

Refinement (IBAMR) package with the constraint IB solver (Bhalla et al, 2013). IBAMR uses local

grid refinement to structure the cartesian grid on which the discretized incompressible Navier-Stokes

equations are solved, producing a grid that is fine close to the boundary and courser away from the

boundary to reduce computational time (see Griffith and Peskin (2005); Griffith (2009); Griffith

and Lim (2012) for additional details on IBAMR).

The array was modeled in two dimensions as four solid circles (representing four solid cylin-

ders with a circular cross-sectional area in three dimensions): three smaller cylinders representing

olfactory sensilla (diameters, l = 0.01 m) evenly spaced in an array and a fourth representing the

supporting antenna (antenna diameter = 0.1 m) (Fig. 2A). This hypothetical array was not mod-

eled after an individual species or group of animals, but represents characteristic features of several

groups which were found to have some effects over fluid flow within sensillum arrays, including gap-

to-sensillum-diameter ratio (Gw) and angle of the array with respect to flow (θ) (Cheer and Koehl,

1987b,a; Loudon et al, 2000; Reidenbach et al, 2008; Nelson et al, 2013; Waldrop, 2013; Waldrop

et al, 2014, 2015b; Waldrop and Koehl, 2016). The gap between the edge of the center sensillum

and the edge of the antenna was maintained at 0.02 m. The spacing between the center of each

sensilla that made up the array was determined by a gap-to-diameter ratio that varied between 1.4

and 49. The angle of the array relative to flow (positive x-axis) was varied between 3.57 and 176

degrees. Each cylinder was modeled using evenly spaced points (spaced apart by 4.88× 10−4 m).

Flow past the sensilla arrays was produced by imposing Dirichlet boundary conditions at the

positive and negative x-axis boundaries of the domain as a fixed horizontal flow speed of Ux and

0 for the positive and negative y boundaries. At the beginning of each simulation, Ux was linearly
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Table 1: Parameters used in simulating fluid velocity fields with constraint-method immersed body

method (cIB).

Parameter Value range

Flow speed, Ux (m s−1) 0.06

Reynolds number, Re 0.11 – 4.9

Distance of array from antenna (m) 0.02

Diameter of sensillum, l (m) 0.01

Diameter of antenna (m) 0.1

Dynamic viscosity of fluid, µ (Pa s) 0.122 – 5.50

Density of fluid, ρ (kg m−3) 1000

Angle of array

to flow direction, θ (degrees)
3.57 – 176

Gap-to-sensillum-diameter ratio, Gw 1.4 – 49

Space between grid points (m) 4.88× 10−4

Time step (s) 1.0× 10−6

Duration of simulation (s) 0.025
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increased from 0 to a final steady-state value to accelerate the flow past the sensilla array. The

speed of the flow tank’s ambient flow was quickly accelerated and then set to a constant 0.06 m s−1.

The simulation was run until steady-state flow conditions were reached. Data analysis excluded

this period of increase to only include steady-state flow conditions.

Flow was simulated on a scaled-up version of a real sensilla array and dynamically scaled by

matching the Reynolds numbers (Re, eq. 1) of the sensilla array based on the sensilla diameter l

and flow speed U = Ux. To alter the Re of each simulation, the fluid density ρ was held constant

at 1,000 kg m−3 and the dynamic viscosity µ of the fluid was changed, varying between 0.122 –

5.50 Pa s to create a range of Re between 0.11 – 4.9. Table 1 outlines the parameters used in the

simulations. Additional details regarding sampling the parameter space of Re, Gw, θ are below in

section 2.2.

2.1.2 Odor concentration model

The velocity of the flow from the immersed boundary simulations were then coupled with an

advection-diffusion solver for an odor concentration to measure how much concentration would be

absorbed by each array. This model was developed and presented in Waldrop et al (2016).

The concentration, C(x, y, t) is solved for using

∂C

∂t
+
∂(uC)

∂x
+
∂(vC)

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
(7)

where u = (u, v) is the velocity field from the simulations in Section 2.1.1 and D is the diffusion

coefficient. Equation 7 is solved numerically in a rectangular domain of 1.24m × 1.24m in air and

in a domain of 1.25m × 1.25m in water. This is smaller than the domain used to solve for the fluid

flow allowing the simulations to be less computationally expensive.

Two different initial odor profiles were used to initialize every simulation. When simulating

arrays in water an initial concentration of

C(x, y, 0) = C∞e
−7(2(x−1.15)/0.1)2 , (8)

is set where x ranges from 1.1 m to 1.2 m (in Waldrop et al (2016), this initial condition is referred

to as a thin filament, here with a width of 0.1m). The total amount of chemical present is controlled

(integration in x and y on the domain) by setting the maximum value of the concentration, C∞ =

Cw∞ = 3.128. When simulating arrays in air an initial condition, denoted the thick filament, is a

never-ending filament. This initial odor concentration has the same exponential profile, Eq. 8 as in
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PROJECT DESCRIPTION

Figure 1: Two-dimensional model of an antennule and three chemosensory hairs. Flow direction
is parallel to the x-axis in the negative direction (black arrow, right to left). The distance of the
array from the antennule (Dist) was fixed at 0.01 m. Parameters altered in the study are the angle
of the array with respect to flow direction (↵, red angle) and the gap-to-hair-diameter ratio (Gw,
blue line).

Page D-1

Figure 2: Two-dimensional model of an antennule (large black circle) and three olfactory sensilla

(small black circles). A. Flow direction is parallel to the x-axis in the negative direction (black

arrow, right to left). The distance of the array from the antennule was fixed at 0.01 m. Colored

boxes (dark blue, light blue, purple) indicate initial levels of the adaptive meshing on the Eulerian

fluid grid used to calculate velocities, increasing in fineness. Parameters altered in the study are the

angle of the array with respect to flow direction (θ, red angle) and the gap-to-sensillum-diameter

ratio (Gw, orange line). B. A sample velocity field resulting from the simulation of fluid flow

through the array (Re = 0.24, Gw = 6.08, θ = 38). Color indicates magnitude of fluid velocity in

non-dimensional units and black arrows indicate direction and magnitude of fluid velocity. Plots

were generated using VisIt (Childs et al, 2012).
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the first condition from 1.1m to 1.15m but with C∞ = Ca∞ = 0.806 and then C(x, y, 0) = Ca∞ for

x > 1.15m. The maximum concentrations were set such that the total concentration introduced

into each domain is equal during the time of simulation. We allow each simulation to run to time

20 s.

As mentioned above, flow around the array was simulated on a scaled-up version of the array.

Therefore, it was necessary to also scale the Pe to match the relative rate of mass transport due to

advection and diffusion. To do this, we multiplied the original diffusion coefficients from Waldrop

et al (2016) by a factor of 2,000. The duration of the simulation was set to 20 seconds to allow the

odor filament to penetrate the entire domain. The values used for these simulations are listed in

Table 2.

2.1.3 Numerical Methods

The numerical method used to solve this mathematical model is given in detail in the supplementary

information of Waldrop et al (2016) and was implemented in MATLAB. Strang splitting was used

to solve the partial differential equation, Equation 7, in multiple steps. Each step was then solved

using finite different methods. Here we summarize this method briefly. The following steps are

used to advance one timestep:

1. Advection of the concentration for a half timestep:

∂C

∂t
+
∂(uC)

∂x
+
∂(vC)

∂y
= 0 . (9)

A third-order weighted essentially nonoscillatory method (WENO) is used to solve this step

(Shu, 1997).

2. Diffusion of the concentration for a full timestep,

∂C

∂t
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
. (10)

The second order two-dimensional Crank-Nicolson method (Strikwerda, 2004; LeVeque, 2007)

is used to solve this step.

3. Determine how much concentration reached each grid point within a sensillum and the con-

centration was set to 0 at that grid point.

4. Advection of the concentration for another half timestep:

∂C

∂t
+
∂(uC)

∂x
+
∂(vC)

∂y
= 0 . (11)
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Table 2: Parameters used in simulating advection and diffusion of odorant concentration to the

sensillum array using velocity vector fields from cIB.

Parameter Water simulations Air simulations

Diffusion coefficient, D (m2s−1) 1.568×10−6 1.20×10−2

Grid resolution 2048 512

Width of filament (m) 0.1 ∞

Grid size, h (m) 6.1035×10−4 2.4×10−3

Time step, dt (s) 3.7×10−3 5.191×10−4

Simulation duration, (s) 20 20

Once again a third-order weighted essentially nonoscillatory method (WENO) is used to solve

this step (Shu, 1997).

A combination of Dirichlet and no-flux boundary conditions are used in the steps given above.

These are set exactly as described in Waldrop et al (2016).

An extensive convergence study was presented in Waldrop et al (2016). To verify that the

slight modifications made to method here did not change the convergence behavior of the method,

convergence was verified again using a velocity field from Section 2.1.1. Based on these tests we used

spatial grids of 512 for the air cases and 2048 for the water cases resulting in a gridsizes reported in

Table 2 for the two different conditions. The velocity fields from the immersed boundary simulations

in Section 2.1.1 were interpolated to these grids to be able to be used in solving of the concentration.

The timestep, dt, was set as the smaller of the constraint set by the Courant-Friedrichs-Lewy

condition (0.9h/U∞ where U∞ = 0.15m s−1 is the maximum velocity in all simulations from Section

2.1.1 and h is the spatial grid size) or the constraint set by the diffusive length scale (R2/4D where

R = L/2 = 0.005m is the radius of the sensillum and D is the diffusion coefficient) (LeVeque, 2007).

2.1.4 Data analysis

Fluid velocity fields simulated in cIB (example in Fig. 2B) were used to calculate several values

related to fluid flow through and around the sensillum array using VisIt (Childs et al, 2012) and R

statistical software (Team, 2011). Velocity fields used for these calculations are the final time step

of the cIB simulation after steady-state flow had been reached. The spatially averaged value of

the magnitude of velocities was calculated for a circle of radius 0.01 m around each sensillum: the

center sensillum in the array, the ‘top’ sensillum (which represents the sensillum counter-clockwise
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from the center sensillum), and the ‘bottom’ sensillum (which represents the sensillum clockwise

from the center sensillum). The magnitude of velocity was then non-dimensionalized by multiplying

by the velocity and the duration of the advection-diffusion simulation time (20 s) and divided by

the sensillum diameter (l = 0.01 m). All velocities reported are dimensionless.

The shear rate of fluid at the surface of each sensillum was calculated by sampling velocities

along a line between the sensilla (see Fig. 2 line labeled Gw). Shear rates were calculated at

the surface of the sensillum to 30% of the sensillum’s diameter away from the sensillum’s surface

(0.003 m). These shear rates are reported for the inside edges of the outer sensilla in the array

and the upper edge of the center sensillum in the array. Shear rates were non-dimensionalized

by multiplying each shear rate by the advection-diffusion simulation time (20 s). All shear rates

reported are dimensionless.

Fluid velocity fields simulated with cIB were also used to calculate the leakiness of the array,

defined as the area that fluid that moved through the array in simulation time divided by the

area of fluid that could have moved through the same area if the array were absent. Velocities

were evenly sampled along a line through the sensilla array (see Fig. 2 orange line labeled Gw)

using VisIt. These velocities were multiplied by the duration of the simulation (t = 0.025) and the

distance between points. These values were summed to give the area the fluid travelled through in

the simulation. Similarly, the area was then computed using velocity equal to the fixed speed of

the simulated flow (0.06 m s−1).

Concentration captured by each sensillum during each time step in the advection-diffusion model

were summed across the sensilla and temporally to find a total concentration captured value for

each simulation. This value was divided by the maximum concentration, C∞, in each simulation

to find the standardized concentration value presented as odor-capture performance.

2.1.5 Computational Environment

Computational simulations were performed on the Bridges Regular Memory cluster at Pittsburgh

Supercomputing Center through the Extreme Science and Engineering Discovery Environment

(XSEDE) and the Multi-Environment Research Computer for Exploration and Discovery (MERCED)

high-performance computing cluster at UC Merced. Bridges Regular Memory is a cluster of 752

nodes with 128GB sRAM each running 2.3 – 3.3 GHz Intel Haswell CPUs with 14 cores each. Data

analyses were performed on a Mac Desktop running on 2.7 GHz 12-Core Intel Xeon E5 processor

with 64 GB of RAM.
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2.2 Uncertainty Analysis

In this work, we consider the uncertainty in the following three input parameters, which are rep-

resented using uniform distributions: Angle (of sensilla array with respect to oncoming flow, θ)

∼ W[0, 180] degrees; Gap-width-to-sensillum-diameter ratio (between sensilla to the sensillum di-

ameter, Gw) ∼ W[0.5, 50] ; and Re (Reynolds number of sensilla array, eq. 1) ∼ W[0.01, 5]. To

efficiently quantify the uncertainty in the quantities of our interest and analyze the sensitivity of

the output quantities with respect to each of the uncertain inputs, we introduce the generalized

polynomial chaos (gPC) expansion method to approximate the full simulation and a variance-based

sensitivity analysis measure – Sobol indices (SI) – to identify the “importance” of each input.

2.2.1 Generalized Polynomial Chaos Expansion

For each quantity of our interest (denoted as w), we construct an approximation wp with respect

to the vector of three uncertain inputs (denoted as ξ) using gPC expansion up to order p as follows

(Wiener, 1938).

w(ξ) ≈ wp(ξ) =

N−1∑
i=0

wiLi(ξ), (12)

where N = (n+p)!
n!p! is the number of terms with n = 3 as the dimension of inputs, and the parameters

wis are called the gPC coefficients to be determined. Based on the specific type of distribution the

input variables have, one can choose a most proper polynomial basis function from Askey scheme

to reach a fast convergence (Xiu and Karniadakis, 2002). In the current work, the functions Lis

are chosen as Legendre polynomials since we consider inputs ξ as uniform random variables. The

first few univariate Legendre polynomials are

L0(ξ) = 1,

L1(ξ) = ξ,

L2(ξ) =
1

2
(3ξ2 − 1),

L3(ξ) =
1

2
(5ξ3 − 3ξ),

The multivariate Legendre polynomials are the product of univariate polynomials.

To determine the gPC coefficients, we run M = 1233 full simulations and extract a set of

quantities of interest corresponding to the inputs as {ξ(j), w(j)}Mj=1, then solve the Least Squares
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problems for the coefficient vector w = [w1, w2, . . . , wN ] as

w = arg min
w̃
‖

N∑
i=0

w̃iLi(ξ)− w(ξ)‖2 (13)

where w̃ =
〈
w̃0, w̃1, . . . , w̃N

〉
is an arbitrary gPC coefficient vector which converges to the desired

coefficient vector w through the minimization.

2.2.2 Sensitivity Analysis

Global sensitivity analysis explores the impact on the model output based on the uncertainty of the

input variables over the whole stochastic input space, and it can help to identify the “important”

uncertain variables. Here, we adopt a variance-based measure to analyze the global sensitivity

analysis: the Sobol indices, which are calculated based on the ANOVA (analysis of variance)

decomposition as follows (Sobol, 1993, 2001).

w(ξ) = w0 +
∑
i

wi(ξi) +
∑
i<j

wij(ξi, ξj) + . . .+ w1,...,n(ξ1, ξ2, . . . , ξn).

where ∫
w(ξ)dξ = w0,

∫
w(ξ)Πk 6=idξk = w0 + wi(ξi),∫

w(ξ)Πk 6=i,jdξk = w0 + wi(ξi) + wj(ξj) + wi,j(ξi, ξj),

and so on.

Based on the ANOVA decomposition, the variance of the sub-function wi1,i2,...,ir can be defined

as

Qi1,i2,...,ir =

∫
w2
i1,i2,...,irdξi1,i2,...,ir ,

and the total variance is defined as

Q =

∫
w2(ξ)dξ − w2

0 =

n∑
r=1

n∑
i1<...<ir

Fi1,i2,...,ir . (14)

Following which, the global sensitivity indices are defined as the ratio of the variance in sub-

dimensional problem to the total variance of the full-dimensional problem as

Si1,i2,...,ir = Qi1,i2,...,ir/Q. (15)

The larger the Sobol index is, the more important the set of input parameters in that sub-

dimensional space is. The most frequently used indices are the first order indices and the total
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indices

Si = Qi/Q , i = 1, . . . , n. (16)

The first order indices measure the sensitivity of the quantity of interest to each single variable ξi

alone. It can help to rank the “importance” of the variables.

Numerically, one may calculate the Sobol indices using Monte Carlo (MC) method. However,

it could be computationally expensive since a large number of full computational fluid dynamics

simulations need to be implemented to reach a reasonable convergence. Therefore, we calculate the

Sobol indices based on the gPC expansion in this work (Sudret, 2008). Assume the gPC expansion

is obtained as

w(ξ) ≈
N−1∑
i=0

wiLi(ξ). (17)

The multivariate Legendre polynomial Li can be represent by products of univariate polynomial

with multiple index α = (α1, . . . , αn) as

Li(ξ) = Lα = Πn
i=1Lαi(ξi), (18)

Let I{i1,...,ir} denote the set of α multi-indices where only αk 6= 0 for k = i1, i2, . . . , ir. Then the

gPC expansion can be rewritten as

w(ξ) ≈
n∑
s=1

∑
α∈I{i1,...,ir}

wαLα(ξi1 , . . . , ξis). (19)

Based on that, the Sobol indices can be approximated using,

Si1,i2,...,ir =
1

Q

∑
α∈I{i1,...,ir}

w2
α

∫
L2
α(ξ)ψ(ξ)dξ, (20)

where ψ(ξ) is the probability density function of ξ and

Q =
N−1∑
i=1

w2
i

∫
L2
i (ξ)ψ(ξ)dξ. (21)

The set of Sobol indices is a variance-based measure to analyze the sensitivity of the model

output (quantity of interest) to each single variable and the sets of variables. SIs of all the quantities

of interest sum to 1 and they shows that the variation of a specific variable or a specific set of

variables makes the majority contribution to the output variance. By comparing the Sobol indices,

one can rank the importance of the uncertain variables and focus on the exploration of those

important variables in the physical process.
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Figure 3: Mean magnitudes of dimensionless velocity (A – C) and dimensionless shear rates (D

– F) against each parameter (θ, Gw, Re) for each olfactory sensillum in the array. A,D: center

sensillum, B,E: top sensillum (counter-clockwise from center sensillum), C,F: bottom sensillum

(clockwise from center sensillum). Color scale at bottom indicates mean magnitude of velocity

(left) shear rate (right) from lowest to highest on each plot.
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Figure 4: Sobol indices calculated for each parameter Re, Gw, and θ as well as interactions between

parameters. A: Average speed and B: shear rate. Each bar represents a sensillum in the array.

2.3 Public Data Availability

Raw data and the code to produce all data figures are publicly available at figshare:

10.6084/m9.figshare.6399740, 10.6084/m9.figshare.6399743, 10.6084/m9.figshare.6399746,

and 10.6084/m9.figshare.6399749.

3 Results

3.1 Flow in the array

Fig. 2B represents a typical velocity vector field from the last time step of the advection simulation

in cIB (Re = 0.24, Gw = 6.08, θ = 38). Flow processes around the antenna and the sensilla array,

flow being much slower for sensilla that are either directly upstream or downstream of the antenna.

Fig. 3 reports values for average speed (A – C) around each sensillum and Fig. 4A and Table 3

report values of Sobol indices. The orientation of each sensillum to the antenna changes with the

angle θ, and average speed around each sensillum is sensitive to θ (center sensillum SI = 0.966, top

sensillum SI = 0.260, bottom sensillum SI = 0.252). Average speed around the center sensillum,

the closest sensillum to the antenna, is especially sensitive to changes in θ since the antenna often

shadows the center sensillum at very low and very high values of θ (Fig. 3A). The average fluid

speeds around the two outer sensilla seem most sensitive to changes in Re (top sensillum SI =

0.400, bottom sensillum SI = 0.420) and not Gw (top sensillum SI = 4.35×10−4, bottom sensillum

SI = 7.51×10−3). Averaged speed around these sensilla is significantly influenced by the interaction
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Figure 3: d

Page D-3Figure 5: Concentration captured versus select parameters and Sobol indices. A: Concentration

captured in water versus angle θ and Re. C: Sobol indices are reported for leakiness (purple) and

concentration captured in water (blue) for comparison. B: Concentration captured in air versus

gap-width-to-diameter ratio (Gw) and angle θ. D: Sobol indices are reported for leakiness (purple)

and concentration captured in air (red) for comparison. Surrogate plots calculated for concentration

captured in water (E) and in air (F) with two parameters in top row.
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between θ and Gw (top sensillum SI = 0.332, bottom sensillum SI = 0.324), supporting previous

studies on flow through sensilla arrays.

Shear rates (Fig. 3 D – F) were absolutely much higher for the outer sensilla in the array com-

pared to the center sensillum. Shear rates for all sensilla are highly sensitive to θ (center sensillum

SI = 0.498, top sensillum SI = 0.849, bottom sensillum SI = 0.845; Fig. 4B) and moderately sen-

sitive to Re (center sensillum SI = 0.489, top sensillum SI = 0.118, bottom sensillum SI = 0.116).

The shear rates around the center sensillum are more heavily influenced by Re mostly likely due to

its close proximity to the antenna. Gw does not influence shear rates on any of the sensilla (center

sensillum SI = 4.76× 10−3, top sensillum SI = 4.87× 10−3, bottom sensillum = 6.06× 10−3), nor

do any interactions between parameters (all interaction SI’s < 0.03).

Values of leakiness ranged from 2.56×10−5 to 0.0317, much lower than previous studies due to

the influence of the central antenna which diverted much of the flow around the sensilla array at

high and low values of θ. The sensitivity of leakiness (Fig. 5C and D, purple bars) of the array was

dominated primarily by changes in Re (SI = 0.862) and to a much lesser extent θ (SI = 0.0686).

Notably, Gw and interactions between Re and Gw did not have a major influence on leakiness (SI

= 0.0151 and SI = 6.24×10−4, respectively), contrary to previous studies of leakiness in sensilla

arrays (Cheer and Koehl, 1987a,b). This is likely due to the influence of the central antenna which

diverted flow around the array at many of the values of Gw that would otherwise produce higher

values of leakiness.

3.2 Odor capture in water and air

Fig. 5 reports values of standardized concentration of odor captured in water (left column) and in air

(right column) conditions. Concentration captured in water ranged from 5.56×10−5 to 1.20×10−4,

while concentration captured in air ranged from 0.223 to 0.489. The difference in performance is

reflective of absolute differences of capture between both air and water.

The sensitivities of concentration captured to parameter change differed dramatically between

water and air conditions (Fig. 5C and D, respectively). Sobol indices indicate that capturing odor

concentration in water is dominated primarily by Re (SI = 0.880) and to a lesser extent θ (SI =

0.114), being relatively insensitive to changes in Gw (SI = 5.20×10−4) and interactions between

parameters (SI’s < 0.01). The surrogate plot of concentration captured in water versus Re and θ

(Fig. 5E) shows that high Re lead to higher capture in water, and middling values of θ enhance the

high values of Re (when the sensilla array is on the upper side of the antennule to flow, not being
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Table 3: Sobol indices (SI) calculated for each of the three parameters (Re, Gw, θ) and their inter-

actions for average speed, shear rate, leakiness, concentration captured in water, and concentration

captured in air. SI’s for each sensillum are reported on each line of the columns for average speed

and shear rate (first line: center sensillum; second line: top sensillum; third line: bottom sensillum).

Average speed Shear rate Leakiness
Conc. captured

in water

Conc. captured

in air

Re

0.138,

0.736,

0.736

0.489,

0.118,

0.116

0.862 0.880 2.37×10−5

Gw

5.16×10−5,

4.19×10−3,

4.22×10−3

4.76×10−3,

4.87×10−3,

6.06×10−3

0.0151 5.20×10−4 0.833

θ

0.8518,

0.110,

0.110

0.498,

0.849,

0.845

0.0686 0.114 0.160

Re & Gw

1.66×10−5,

7.87×10−5,

7.83×10−5

2.71×10−3,

6.69×10−5,

9.70×10−5

6.241×10−4 6.14×10−5 1.68×10−6

Re & θ

8.82×10−3,

7.46×10−4,

7.51×10−4

3.52×10−3,

0.0143,

0.0112

0.0214 4.34×10−3 3.79×10−6

Gw & θ

4.41×10−4,

0.149,

0.149

4.59×10−3,

0.0134,

0.0223

0.0317 2.75×10−4 7.05×10−3

All

parameters

2.17×10−9,

7.89×10−5,

7.88×10−4

7.84×10−8,

1.97×10−5,

1.61×10−4

5.20×10−4 3.68×10−6 3.34×10−11

24

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/337808doi: bioRxiv preprint first posted online Jun. 4, 2018; 

http://dx.doi.org/10.1101/337808
http://creativecommons.org/licenses/by-nc/4.0/


shadowed by it).

In contrast, concentration captured in air is highly sensitive to Gw (SI = 0.833) and moderately

sensitive to θ (SI = 0.160), while being insensitive to Re (SI = 2.37×10−5) and interactions between

parameters (SI’s < 0.001). This is a reversal of the trend of concentration capture in water which

shows low sensitivity toGw and high sensitivity to Re. The surrogate plot of concentration captured

in air versus Gw and θ indicates that the highest captures occur at high Gw values (when sensilla

are spaced far apart) and low θ values (when the sensilla array is on the upstream side of the

antenna).

Performance in the context of parameter change are similar between leakiness and concentration

captured in water and dissimilar between leakiness and concentration captured in air. Sobol indices

reported for the three performance metrics in Fig. 5C and D reflect this pattern: leakiness and con-

centration captured in water share similar values for sensitivity to Re (0.862 and 0.85, respectively)

and Gw (0.0151 and 6.60×10−4, respectively), while leakiness and concentration captured in air

show drastically different Sobol indices for the two parameters. The norm of the difference between

values of leakiness and concentration captured in water is much lower (0.313) than the same norm

calculated between values of leakiness and concentration captured in air (0.445), indicating that

leakiness is a better predictor of concentration captured in water than concentration captured in

air.

4 Discussion

4.1 Odor capture differs between air and water

In this study, we simulate odor capture by a series of theoretical olfactory sensilla arrays in two bio-

logically and environmentally relevant situations reflective of water and air, respectively: a narrow,

brief band of high-odor concentration and a broad, continuous band of lower-odor concentration.

We use this model to investigate the effects of three parameters (Reynolds number Re, Gap-to-

sensillum-diameter width Gw, and the angle of the array to the direction of oncoming flow θ) on

odor-capture performance. Leakiness and concentration captured values provide a way to assess

the relative performance of individual sensillum arrays in a typical encounter event in water and

in air. Sobol indices calculated via uncertainty analysis provide a quantitative way to assess the

relative sensitivity of capture to the parameters varied.

The results of odor-capture performance indicate that there are profound differences between
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odor capture in air versus water. Many times more odorant is captured in air (Fig. 5A – B, E – F)),

likely the result of the longer exposure times to a larger filament which is many times the diameter

of the olfactory sensillum and the higher diffusivity of odorants in air compared to water (Willis

and Arbas, 1991). The coefficient of diffusion used for these simulations were 10,000 times higher

in air than in water, resulting in low Péclet numbers (Pe < 1) and facilitating greater capture

in air. This result held even though the odor filament in air was of lower concentration than the

high-concentration filament of water, which is broadly reflective of odor filaments in their respective

fluid environments.

Furthermore, the sensitivity analyses on odor capture revealed that the parameters of the array

controlling performance are drastically different between air and water. The quantitative sensitivity

analysis indicates that gap width between sensilla Gw has no meaningful effect on odor capture in

water (Fig. 5D), a result seemingly contrary to previous studies (Cheer and Koehl, 1987a,b; Stacey

et al, 2002; Schuech et al, 2012). The presence of the antenna greatly reduces leakiness of the

array compared to previous studies, consistent with other studies investigating leakiness through

a sensillum array close to solid boundaries (Loudon et al, 1994). Re has an important effect on

odor capture in water (Fig. 5D) as low diffusion rates of odorant molecules leads to the boundary

layer being more of a barrier for arrays in water rather than air. Boundary layers share inverse

relationship with Re and both leakiness and odor capture in water are highly sensitive to changes

in Re.

Capture in air is tied more to sensillum arrangement than the size or movement of the array.

In contrast to both odor capture in water and leakiness, Re does not influence odor-capture per-

formance in air (Fig. 5D). Instead, the arrangement of sensilla, i.e. the gaps between sensilla Gw

and to a lesser extent θ, seem to influence odor capture in air. This is likely a reflection of the

outsized influence of diffusivity to capture at low Pe, and where spreading sensory sensilla further

apart increases the area swept through and avoids the slow-moving fluid around the antenna.

Leakiness and other measures of fluid flow are more relevant predictor of odor capture per-

formance in water than in air. Many studies have assumed leakiness as a proxy for odor-capture

performance in aquatic crustaceans (Mead et al, 1999; Mead and Koehl, 2000; Humphrey and Mel-

lon, 2007; Reidenbach et al, 2008; Nelson et al, 2013; Waldrop et al, 2015b,a), and the results of

this study generally support this assumption in water where Pe are high (on the order of 1,000).

However, the dramatic differences in capture in air do not support this assumption; diffusion rates

D in air are high enough to dominate capture, having Pe below one. Studies that have investigated
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both array leakiness and odor-capture performance have found a similar mismatch between the two

(Waldrop and Koehl, 2016; Waldrop et al, 2016). Diffusive transport must be taken into account

when investigating capture by sensillum arrays in air.

4.2 Predictions of Morphological Diversity

Animals are under different sets of constraints capturing odors in water versus air. Fluids possess

different physical properties, diffusion rates vary dramatically between fluids, and the shape, size,

and frequency of the odor filaments in the environment all differ as a result of fluid habitat. Thus, it

is reasonable to expect differences in common combinations of morphological parameters for extant

groups of animals in aquatic versus terrestrial habitats.

Most biological systems are extremely complex, and odor capture is no exception. The com-

plexity of parameter space leads to many parameter combinations that will result in the same

functional performance such as many-to-one mapping, mechanical equivalence, or functional re-

dundancy (Wainwright et al, 2005; Anderson and Patek, 2015; Muñoz et al, 2017). Since odor

capture is a functionally redundant performance metric, making specific predictions about the

optimal configuration of parameters involved in odor capture is less useful than making broader

predictions about the ways in which the parameters of this system could be constrained, the rates

at which diversification could be expected, and the resulting morphological range of parameter

values. Here, we make some general predictions on the diversity of parameter values in groups of

aquatic and terrestrial animals within the Pancrustacea based on the performance results of our

model and sensitivity analyses.

Performance in aquatic crustaceans should be more constrained overall due to lower capture

rates and the nature of odor filaments in water. Our simple model shows that performance in water

is tied heavily to Reynolds number (Re), but not factors associated with the arrangement of the

sensilla. Since odor-capture performance in water is highly sensitive to Re but less so to Gw, it is

likely that aquatic crustaceans will have more dense arrays that rely on animal-generated currents

to increase Re fluid penetration into the array. Additionally, the range of Re over which aquatic

crustaceans operate should be constrained and show low diversity or be the sites of potential

rapid evolutionary change between antennule configurations which allow for high odor-capture

performance.

Conversely, performance in terrestrial crustaceans should not be directly tied to changes in flow

(U in Re eq. 1) caused by either animal-induced or environmental fluid currents, but should show
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higher constraints in terms of the gaps between olfactory sensilla. The simple model shows that

performance in air is likely unconstrained by Re, and instead may rely heavily on gap-width-to-

sensillum-diameter ratio (Gw), spacing olfactory sensilla far apart. Terrestrial crustaceans, includ-

ing insects, should have arrays that are relatively sparse compared to aquatic crustaceans and wider

morphological diversity. Anecdotally, this seems to be true given studies on insects which exhibit

a wide diversity of array and olfactory sensilla morphologies (Hallberg and Hansson, 1999).

In the case of animals that require specialized sensilla that pick up very rare or dilute signals

(such as sex pheromones) may require insects to maintain denser array with smaller gap widths

between sensilla in increase the overall surface area of the sensor. When arrays are very dense

and sensilla close together, it is possible that animals would be required to induce flow through

flapping, waiving, or flying, where low leakiness and the local Pe would be dominated by advective

transport and odor capture would be more sensitive to manipulation of Re of the array. This idea

is supported anecdotally by observations of terrestrial hermit crabs that have dense arrays with

very small gaps that lay close to the antennule and flick their antennules (Waldrop and Koehl,

2016; Waldrop et al, 2016) and silkworm moths that have extremely dense arrays and require wing-

flapping to generate currents within the array to aid in odorant capture (Loudon et al, 2000). In

these cases, increased flow within the dense arrays may make available more of the sensory surface

area than no animal-generated flow (Waldrop et al, 2016).

4.3 Future directions

Uncertainty analysis on computational models provides a quantitative way to analyze the relative

importance of morphological and kinematic parameters on functional performance. It provides an

important bridge between computational modeling and studies of morphological diversity in animal

populations, making it possible to predict patterns of morphological and kinematic diversity based

on the sensitivity of each parameter on performance.

However, these predictions are only as good as the model itself at reflecting the most important

parameters of each functional system. Our model accounts for only three of many parameters that

may be influential to odor capture in two dimensions due to computational constraints. The model

excludes many parameters that could have a major effect on performance and thereby change the

predictions made by sensitivity analyses.

As a result, these hypotheses need to be tested against morphological and kinematic measure-

ments of several groups of aquatic and terrestrial crustaceans representing independent lineages
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of terrestrialization. Phylogenetically corrected measurements of performance can be used to test

predictions about the expected rates of parameter evolution and the overall diversity of parameter

values in groups (Muñoz et al, 2017). Additionally, measurements of these parameters on groups of

aquatic and terrestrial crustaceans can be measured to see if parameters are constrained or diverse

compared to predictions made by the sensitivity analyses.

While a very simple model with many limitations, morphological measurements from extant

animals can provide important feedback for improving the model and better understanding odor

capture. Comparison to a systematic range of extant odor-capture antennae will provide impor-

tant feedback to the model and point towards parameters that should be included to refine the

predictions made by sensitivity analyses through other tools in uncertainty quantification.
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