129 research outputs found

    Protective Effect of Hypoxic Preconditioning on Hypoxic-Ischemic Injured Newborn Rats

    Get PDF
    Brief episodes of cerebral hypoxia-ischemia cause transient ischemic tolerance to subsequent ischemic events that are otherwise lethal. This study was conducted to evaluate the protective effect of hypoxic preconditioning on hypoxic-ischemic injury in the neonatal rat and the persistence of a protective window after hypoxic preconditioning. The rats were preconditioned with hypoxia (8% oxygen, 92% nitrogen) for three hours, subjected to ischemia using ligation of the right common carotid artery, and then exposed to another three hours of hypoxia. Using proton magnetic resonance spectroscopy, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) staining, and morphologic scores, this study shows that hypoxic preconditioning 6-hr to 1-day before hypoxic-ischemic injury increases survival rates and has neuroprotective effects against subsequent hypoxic-ischemic injury. The mechanism of the protective effects of hypoxic preconditioning in the newborn rat brain may involve downregulation of apoptotic cell death

    Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration

    Get PDF
    Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults. Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP). In P23H rats administered with HU210 (100 μg/kg, i.p.) from P24 to P90, ERG recordings showed an amelioration of vision loss, as compared to vehicle-administered animals. Under scotopic conditions, the maximum a-wave amplitudes recorded at P60 and P90 were higher in HU210-treated animals, as compared to the values obtained in untreated animals. The scotopic b-waves were significantly higher in treated animals than in untreated rats at P30, P60 and P90. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. HU210-treated animals had 40% more photoreceptors than untreated animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were also preserved in HU210-treated P23H rats. These results indicate that HU210 preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in P23H rats. These data suggest that cannabinoids are potentially useful to delay retinal degeneration in RP patients.This research was supported by grants from the Spanish Ministry of Economy and Competitiveness (BFU2012-36845-FEDER), Instituto de Salud Carlos III (RETICS RD12/0034/0010), Universidad de Alicante (UA2010-48536273), and the Organización Nacional de Ciegos Españoles (ONCE)

    О патогенезе деструктивной пневмонии в период COVID-19: клиническое наблюдение

    Get PDF
    Community-acquired pneumonia is a potentially serious infection in children with high morbidity rate, risk of severe course and unfavorable outcomes. Specialists have noted the increased incidence of the destructive forms in the recent years.Aim. To present a clinical case of destructive pneumonia in a 1 year 2 month old child, hospitalized in the State Budgetary Healthcare Institution “Children’s City Clinical Hospital of St. Vladimir Moscow Healthcare Department”, and analyze it in terms of current understanding on the disease pathogenesis.Conclusion. During COVID-19 (COronaVIrus Disease 2019) pandemic, pulmonologists and pediatric surgeons encountered an unconventional course of destructive pneumonia. A large number of studies of pathophysiological processes in acute viral interstitial pneumonias have recently allowed to expand our understanding of the role of coagulation system. At the same time, new questions arose concerning the clinical course and development of the pathological infectious process.Актуальность проблемы внебольничных пневмоний в педиатрии объясняется высоким уровнем заболеваемости, риском тяжелого течения и неблагоприятного исхода. В последние годы отмечается увеличение частоты деструктивных форм заболевания.Целью работы явился анализ клинического случая течения деструктивной пневмонии (ДП) у ребенка 1 года 2 мес., госпитализированного в Государственное бюджетное учреждение здравоохранения города Москвы «Детская городская клиническая больница святого Владимира Департамента здравоохранения города Москвы» (2021), с точки зрения современных данных о патогенезе заболевания.Заключение. В условиях пандемии COVID-19 (COronaVIrus Disease 2019) пульмонологи и детские хирурги столкнулись с нестандартным течением ДП. В последнее время представления о роли системы коагуляции расширились благодаря увеличению числа исследований патофизиологических процессов при вирусных интерстициальных пневмониях, однако появились новые вопросы, касающиеся клинического течения и развития патологического инфекционного процесса

    Нейропротекторное действие миоинозитола на клеточной модели глутаматного стресса как основа для профилактики нарушений внутриутробного развития головного мозга

    Get PDF
    Myoinositol is the basis for the synthesis of an important group of signal molecules, inositolphosphates, which mediate signal transmission from receptors of growth factors and neurotransmitters. Grants myo-Inositol promote the prevention of folate-resistant defects and neuroprotection of the fetal brain ischemia. The paper presents the results of a study of the effects of myoinositol on the growth of cerebellar neurons in culture under glutamate stress. It is shown that the effects of myoinositol on the survival of neurons (+17 %) exceed the effects of drugs that are usually used for neuroprotection (peptide extracts - + 10 %, choline preparations - no more than 3 %). Confirmed in the present work, a direct neuroprotective effect of myo-Inositol indicates the importance of the use of myo-Inositol during pregnancy with the aim of neuroprotection of the fetal brain.Миоинозитол - основа для синтеза важной группы сигнальных молекул, инозитолфосфатов, которые опосредуют передачу сигнала от рецепторов ростовых факторов и нейротрансмиттеров. Дотации миоинозитола способствуют профилактике фолат-резистентных пороков развития и нейропротекции мозга плода в условиях ишемии. В работе представлены результаты исследования эффектов миоинозитола на рост нейронов мозжечка в культуре в условиях глутаматного стресса. Показано, что эффекты миоинозитола на выживание нейронов (+17 %) превосходят эффекты средств, которые обычно используются для нейропротекции (пептидные экстракты - +10 %, холиновые препараты - не более 3 %). Подтверждённое в настоящей работе прямое нейропротекторное действие миоинозитола указывает на важность использования миоинозитола во время беременности с целью нейропротекции мозга плода

    Аскорбат лития улучшает адаптацию к стрессу на моделях in vitro и in vivo

    Get PDF
    He paper presents the results of studies of Lithium ascorbate on the models of stress in vitro and in vivo. The results show significant neuroprotective effect of Lithium ascorbate on the model of glutamate stress in the culture of grainy neurocytes. Experiments on modeLs of transport and immobiLization stress confirmed the adaptogenic effects of Lithium ascorbate.В настоящей работе представлены результаты исследований in vitro и in vivo воздействия аскорбата лития на адаптацию к стрессу. Представлены результаты исследований нейроцитологических и экспериментальных моделей стресса. Установлен нейропротекторный эффект аскорбата лития на модели глутаматного стресса в культуре зернистых нейроцитов мозжечка. Эксперименты на моделях транспортного и иммобилизационного стресса подтвердили адаптогенное воздействие аскорбата лития

    Anti-Prion Activity of Brilliant Blue G

    Get PDF
    BACKGROUND: Prion diseases are fatal neurodegenerative disorders with no effective therapy currently available. Accumulating evidence has implicated over-activation of P2X7 ionotropic purinergic receptor (P2X7R) in the progression of neuronal loss in several neurodegenerative diseases. This has led to the speculation that simultaneous blockade of this receptor and prion replication can be an effective therapeutic strategy for prion diseases. We have focused on Brilliant Blue G (BBG), a well-known P2X7R antagonist, possessing a chemical structure expected to confer anti-prion activity and examined its inhibitory effect on the accumulation of pathogenic isoforms of prion protein (PrPres) in a cellular and a mouse model of prion disease in order to determine its therapeutic potential. PRINCIPAL FINDINGS: BBG prevented PrPres accumulation in infected MG20 microglial and N2a neural cells at 50% inhibitory concentrations of 14.6 and 3.2 µM, respectively. Administration of BBG in vivo also reduced PrPres accumulation in the brains of mice with prion disease. However, it did not appear to alleviate the disease progression compared to the vehicle-treated controls, implying a complex role of P2X7R on the neuronal degeneration in prion diseases. SIGNIFICANCE: These results provide novel insights into the pathophysiology of prion diseases and have important implications for the treatment

    Cannabinoids and Dementia: A Review of Clinical and Preclinical Data

    Get PDF
    The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD). Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies

    Sublethal in vitro glucose-oxygen deprivation protects cultured hippocampal neurons against a subsequent severe insult

    No full text
    Rat and gerbil hippocampus exposed to a sublethal period of ischemia becomes resistant to a subsequent period of lethal ischemia induced several days later, a phenomenon referred to as ischemic preconditioning. Here we describe ischemic preconditioning induced in vitro in cultured hippocampal neurons. Mixed neuroglial hippocampal cell cultures of 14-17 DIV were exposed to a combined glucose and oxygen deprivation (GOD). Cultures subjected to 90 min, but not 60 min, of GOD showed extensive degeneration after a 1 day recovery period. An episode of 60 min of preconditioning GOD followed 1 and 2 days later by 90 min of GOD resulted in 40-60% protection. The data demonstrate that ischemic preconditioning can be mimicked in an in vitro hippocampal cell culture system

    Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons

    No full text
    When mouse hippocampal neuronal cultures, 2-3 weeks in vitro, were transiently exposed to combined glucose and oxygen deprivation (100% argon, 5% CO2, in glucose-free medium) for 90 min, extensive neuronal degeneration had occurred after 24 h of reoxygenation. When these cultures were preincubated with cyclosporin A, a calcineurin inhibitor and a blocker of the mitochondrial permeability transition, neuronal death diminished by 30-50%. Similarly, the cyclosporin A analogue, N-Me-Val-4-cyclosporin A, a potent blocker of the mitochondrial permeability transition with no significant calcineurin blocking activity, decreased cell death by 70-80%. Both cyclosporin A and N-Me-Val-4-cyclosporin A markedly attenuated calcium-induced swelling of isolated mouse brain mitochondria by blocking the mitochondrial permeability transition. The potassium thiocyanate-stabilized binding of cyclophilin D to mouse brain mitochondrial membranes was completely prevented by cyclosporin A and N-Me-Val-4-cyclosporin A. Our results strongly suggest that the mitochondrial permeability transition is involved in oxygen/glucose deprivation-induced cell death in vitro. Cyclophilin D and other components of the mitochondrial permeability transition may be important targets for neuroprotective and anti-ischaemic drugs

    Cyclosporin A and its non-immunosupressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation induced damage to rat cultured hippocampal neurons

    No full text
    When mouse hippocampal neuronal cultures, 2-3 weeks in vitro, were transiently exposed to combined glucose and oxygen deprivation (100% argon, 5% CO2, in glucose-free medium) for 90 min, extensive neuronal degeneration had occurred after 24 h of reoxygenation. When these cultures were preincubated with cyclosporin A, a calcineurin inhibitor and a blocker of the mitochondrial permeability transition, neuronal death diminished by 30-50%. Similarly, the cyclosporin A analogue, N-Me-Val-4-cyclosporin A, a potent blocker of the mitochondrial permeability transition with no significant calcineurin blocking activity, decreased cell death by 70-80%. Both cyclosporin A and N-Me-Val-4-cyclosporin A markedly attenuated calcium-induced swelling of isolated mouse brain mitochondria by blocking the mitochondrial permeability transition. The potassium thiocyanate-stabilized binding of cyclophilin D to mouse brain mitochondrial membranes was completely prevented by cyclosporin A and N-Me-Val-4-cyclosporin A. Our results strongly suggest that the mitochondrial permeability transition is involved in oxygen/glucose deprivation-induced cell death in vitro. Cyclophilin D and other components of the mitochondrial permeability transition may be important targets for neuroprotective and anti-ischaemic drugs
    corecore