162 research outputs found
Challenges and potentials of forward osmosis process in the treatment of wastewater
© 2019, © 2019 Taylor & Francis Group, LLC. An emerging osmotically driven membrane process, forward osmosis has attracted growing attention in the field of desalination and wastewater treatment. The present study provides a critical review of the forward osmosis process for wastewater treatment focusing on most recent studies. Forward osmosis is one of the technologies that has been widely studied for the treatment of a wide range of wastewater because of its low fouling and energy consumption compared to conventional techniques for wastewater treatment. To date, forward osmosis has limited applications in the field of wastewater treatment due to several technical and economic concerns. Although membrane cost is one of the critical issues that limit the commercial application of forward osmosis, there are other obstacles such as membrane fouling, finding an ideal draw solution that can easily be recycled, concentration polarization and reverse salt diffusion. Innovative technologies for in-situ real-time fouling monitoring can give us new insights into fouling mechanisms and fouling control strategies in forward osmosis. This study evaluated recent advancements in forward osmosis technology for wastewater treatment and the main challenges that need to be addressed in future research work
In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing
AbstractObjectiveAscending thoracic aortic aneurysms (ATAA) are a life-threatening condition due to the risk of rupture or dissection. This risk is increased in the presence of a bicuspid aortic valve (BAV). The purpose of this study was to provide data on the elastic modulus of aortic wall of ATAA using uniaxial tensile testing in two different areas of the stress–strain relationship: physiological and maximum range of stresses. The influence of tissue location, tissue orientation and valve type on these parameters was investigated.Materials and methodsTissues freshly excised from ATAA with bicuspid or tricuspid aortic valve were obtained from greater and lesser curvature (GC and LC) and the specimens were tested uniaxially in circumferential (CIRC) and longitudinal (LONG) orientation. Maximum elastic modulus (MEM) was given by the maximum slope of the stress–strain curve before failure. Physiological modulus (PM) was derived from the Laplace law and from ranges of pressure of 80–120 mmHg. Means of each group of specimen were compared using Student's t-test to assess the influence of location, orientation and valve type on each mechanical parameter.ResultsPM was found to be significantly lower than the MEM (p < 0.001). The MEM and PM were significantly higher (p < 0.01) in the CIRC (n = 66) than in the LONG orientation (n = 42). The MEM was higher in the circumferential orientation in the BAV group (p < 0.001 in GC and p < 0.05 in LC). MEM and PM in GC specimens were higher in the longitudinal orientation than the LC specimens (p < 0.05).ConclusionThis study demonstrates the anisotropy of the aortic wall in ATAA and provides data on the mechanical behaviour in the physiological range of pressure
Brine reject dilution with treated wastewater for indirect desalination
The forward osmosis (FO) process was suggested as a pretreatment to a multi-stage flashing (MSF) plant to reduce the environmental impact of brine discharge and the chemicals used. Yet, there is no study investigating the performance of the FO process pretreatment to the MSF plant using tertiary sewage effluent (TSE) as a feed solution. Combining MSF brine with the TSE generates a considerable permeation flux, reducing the membrane area and capital cost. This study evaluated the performance of the FO process for indirect desalination of the MSF brine, considering membrane fouling, cleaning, required membrane area and the specific power consumption. The FO process used a thin-film composite (TFC) membrane to dilute the brine reject from the MSF plant by the TSE and hence converting waste solutions into a feasible water resource. A considerable high water flux (±35 L/m2h) was generated and slightly decreased throughout each experiment's 4 cycles. An enhancement in the water permeability was observed in the FO tests with a prefiltration of the brine reject and the wastewater with 20 μm and an osmotic backwash cleaning of the used membrane. The prefiltration of the draw and feed solutions was effective in minimizing the impact of fouling. Maximum power consumption of 0.007 kWh/m³ was consumed in the forward osmosis process without prefiltration and decreased to 0.006 kWh/m³ in the FO process. The proposed FO system successfully diluted the brine reject’ divalent ions, reducing their concentration to 43% in some cases. Depending on the FO membrane orientation, the TSE feed solution resulted in a 276%–473% reduction in the number of FO elements required in the FO process compared to the seawater feed solution.This publication was supported by NPRP grant 10-0117-170176 from the Qatar National Research Fund (a member of Qatar Foundation ).Scopu
In-vitro particle image velocimetry assessment of the endovascular haemodynamic features distal of stent-grafts that are associated with development of limb occlusion
Aneurysms are common vascular diseases which affect normal haemodynamics in the aorta. Endovascular aortic repair (EVAR) using stent-grafts is a common treatment that excludes the aneurysm from the circulation, preventing further growth and eventual rupture. However, complications such as endoleak, dislocation or limb occlusion have been reported after EVAR. This study hypothesized that the compliance mismatch between the graft and parent artery causes haemodynamic disturbances at the distal edge of the graft. Therefore, the potential for the graft to cause limb occlusion was assessed. A compliant phantom was fabricated. A circulatory loop was developed to run the fluid and generate a physiological flow waveform. Particle Image Velocimetry was utilised to capture fluid dynamics in the replica. The result showed a low velocity region at the graft trailing edge wall. The low velocity boundary layer thickness decreased downstream of the graft. A flow recirculation was initiated and increased in size during the mid-acceleration at the low velocity region. Shear stresses fluctuated at the trailing edge of the graft which is a risk factor for intimal thickening followed by graft or limb occlusion. It was concluded that this haemodynamic behaviour was due to the graft and parent artery compliance mismatch
Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees
The spread of infectious diseases crucially depends on the pattern of
contacts among individuals. Knowledge of these patterns is thus essential to
inform models and computational efforts. Few empirical studies are however
available that provide estimates of the number and duration of contacts among
social groups. Moreover, their space and time resolution are limited, so that
data is not explicit at the person-to-person level, and the dynamical aspect of
the contacts is disregarded. Here, we want to assess the role of data-driven
dynamic contact patterns among individuals, and in particular of their temporal
aspects, in shaping the spread of a simulated epidemic in the population.
We consider high resolution data of face-to-face interactions between the
attendees of a conference, obtained from the deployment of an infrastructure
based on Radio Frequency Identification (RFID) devices that assess mutual
face-to-face proximity. The spread of epidemics along these interactions is
simulated through an SEIR model, using both the dynamical network of contacts
defined by the collected data, and two aggregated versions of such network, in
order to assess the role of the data temporal aspects.
We show that, on the timescales considered, an aggregated network taking into
account the daily duration of contacts is a good approximation to the full
resolution network, whereas a homogeneous representation which retains only the
topology of the contact network fails in reproducing the size of the epidemic.
These results have important implications in understanding the level of
detail needed to correctly inform computational models for the study and
management of real epidemics
Regional mechanical and biochemical properties of the porcine cortical meninges
peer-reviewedThe meninges are pivotal in protecting the brain against traumatic brain injury (TBI), an ongoing issue in most mainstream sports. Improved understanding of TBI biomechanics and pathophysiology is desirable to improve preventative measures, such as protective helmets, and advance our TBI diagnostic/prognostic capabilities. This study mechanically characterised the porcine meninges by performing uniaxial tensile testing on the dura mater (DM) tissue adjacent to the frontal, parietal, temporal, and occipital lobes of the cerebellum and superior sagittal sinus region of the DM. Mechanical characterisation revealed a significantly higher elastic modulus for the superior sagittal sinus region when compared to other regions in the DM. The superior sagittal sinus and parietal regions of the DM also displayed local mechanical anisotropy. Further, fatigue was noted in the DM following ten preconditioning cycles, which could have important implications in the context of repetitive TBI. To further understand differences in regional mechanical properties, regional variations in protein content (collagen I, collagen III, fibronectin and elastin) were examined by immunoblot analysis. The superior sagittal sinus was found to have significantly higher collagen I, elastin, and fibronectin content. The frontal region was also identified to have significantly higher collagen I and fibronectin content while the temporal region had increased elastin and fibronectin content. Regional differences in the mechanical and biochemical properties along with regional tissue thickness differences within the DM reveal that the tissue is a non-homogeneous structure. In particular, the potentially influential role of the superior sagittal sinus in TBI biomechanics warrants further investigation
A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models
In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous media-based model has been investigated through several different numerical examples. First, we investigate model parameters that have a profound influence on the flow and pressure distributions of the system. The simulation results have been compared against the waveforms generated by three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity of the proposed model demonstrates that it can be an excellent alternative for the existing models
- …