14 research outputs found

    Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study

    Get PDF
    Background: Many causes of vision impairment can be prevented or treated. With an ageing global population, the demands for eye health services are increasing. We estimated the prevalence and relative contribution of avoidable causes of blindness and vision impairment globally from 1990 to 2020. We aimed to compare the results with the World Health Assembly Global Action Plan (WHA GAP) target of a 25% global reduction from 2010 to 2019 in avoidable vision impairment, defined as cataract and undercorrected refractive error. Methods: We did a systematic review and meta-analysis of population-based surveys of eye disease from January, 1980, to October, 2018. We fitted hierarchical models to estimate prevalence (with 95% uncertainty intervals [UIs]) of moderate and severe vision impairment (MSVI; presenting visual acuity from <6/18 to 3/60) and blindness (<3/60 or less than 10° visual field around central fixation) by cause, age, region, and year. Because of data sparsity at younger ages, our analysis focused on adults aged 50 years and older. Findings: Global crude prevalence of avoidable vision impairment and blindness in adults aged 50 years and older did not change between 2010 and 2019 (percentage change −0·2% [95% UI −1·5 to 1·0]; 2019 prevalence 9·58 cases per 1000 people [95% IU 8·51 to 10·8], 2010 prevalence 96·0 cases per 1000 people [86·0 to 107·0]). Age-standardised prevalence of avoidable blindness decreased by −15·4% [–16·8 to −14·3], while avoidable MSVI showed no change (0·5% [–0·8 to 1·6]). However, the number of cases increased for both avoidable blindness (10·8% [8·9 to 12·4]) and MSVI (31·5% [30·0 to 33·1]). The leading global causes of blindness in those aged 50 years and older in 2020 were cataract (15·2 million cases [9% IU 12·7–18·0]), followed by glaucoma (3·6 million cases [2·8–4·4]), undercorrected refractive error (2·3 million cases [1·8–2·8]), age-related macular degeneration (1·8 million cases [1·3–2·4]), and diabetic retinopathy (0·86 million cases [0·59–1·23]). Leading causes of MSVI were undercorrected refractive error (86·1 million cases [74·2–101·0]) and cataract (78·8 million cases [67·2–91·4]). Interpretation: Results suggest eye care services contributed to the observed reduction of age-standardised rates of avoidable blindness but not of MSVI, and that the target in an ageing global population was not reached. Funding: Brien Holden Vision Institute, Fondation Théa, The Fred Hollows Foundation, Bill & Melinda Gates Foundation, Lions Clubs International Foundation, Sightsavers International, and University of Heidelberg

    Tracking development assistance for health and for COVID-19: a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine

    No full text
    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent papers dealing with MCNTs and their application in biomedical and industrial fields

    Synthesis, characterization and in vitro

    No full text
    Magnetic nanoparticles have properties that cause to apply them in cancer therapy and vehicles for the delivery of drugs such as 5FU, especially when they are modified with biocompatible copolymers. The aim of this study is to modify superparamagnetic iron oxide nanoparticles (SPIONPs) with PCL-PEG-PCL copolymers and then utilization of these nanoparticles for encapsulation of anticancer drug 5FU. The ring-opening polymerization (ROP) was used for the synthesis of PCL-PEG-PCL copolymer by ε-caprolactone (PCL) and polyethylene glycol (PEG2000). We used the double emulsion method (water/oil/water) to prepare 5FU-encapsulated Fe3O4 magnetic nanoparticles modified with PCL-PEG-PCL copolymer. Chemical structure and magnetic properties of 5FU-loaded magnetic-polymer nanoparticles were investigated systematically by employing FT-IR, XRD, VSM and SEM techniques. In vitro release profile of 5FU-loaded NPs was also determined. The results showed that the encapsulation efficiency value for nanoparticles were 90%. Moreover, the release of 5FU is significantly higher at pH 5.8 compared to pH 7.4. Therefore, these nanoparticles have sustained release and can apply for cancer therapy

    Biomembrane Reactions of Nitroxyl Radicals

    No full text
    corecore