971 research outputs found

    In-depth proteomics identifies a role for autophagy in controlling reactive oxygen species mediated endothelial permeability

    Get PDF
    Endothelial cells (ECs) form the inner layer of blood vessels and physically separate the blood from the surrounding tissue. To support tissues with nutrients and oxygen, the endothelial monolayer is semipermeable. When EC permeability is altered, blood vessels are not functional, and this is associated with disease. A comprehensive knowledge of the mechanisms regulating EC permeability is key in developing strategies to target this mechanism in pathologies. Here we have used an in vitro model of human umbilical vein endothelial cells mimicking the formation of a physiologically permeable vessel and performed time-resolved in-depth molecular profiling using stable isotope labeling by amino acids in cell culture mass spectrometry (MS)-proteomics. Autophagy is induced when ECs are assembled into a physiologically permeable monolayer. By using siRNA and drug treatment to block autophagy in combination with functional assays and MS proteomics, we show that ECs require autophagy flux to maintain intracellular reactive oxygen species levels, and this is required to maintain the physiological permeability of the cells

    Exposure to PCB126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance

    Get PDF
    Polychlorinated biphenyls (PCBs) are persistent environmental organic pollutants known to have detrimental health effects. Using a mouse model, we previously demonstrated that PCB126 exposure before and during pregnancy and throughout the perinatal period adversely affected offspring glucose tolerance and/or body composition profiles. The purpose of this study was to investigate the glucose tolerance and body composition of offspring born to dams exposed to PCB126 during the nursing period only. Female ICR mice were bred, and half of the dams were exposed to either vehicle (safflower oil) or 1 µmole PCB126 per kg of body weight via oral gavage on postnatal days (PND) 3, 10, and 17 (n = 9 per group). Offspring body weight, lean and fat mass, and glucose tolerance were recorded every three weeks. PCB126 treatment did not alter dam nor offspring body weight (p \u3e 0.05). PCB126-exposed male and female offspring displayed normal body composition (p \u3e 0.05) relative to vehicle-exposed offspring. However, both male and female offspring that were exposed to PCB126 during the nursing period had significantly impaired glucose tolerance at 3 and 9 weeks of age (p \u3c 0.05). At 6 and 12 weeks of age, no impairments in glucose tolerance existed in offspring (p \u3e 0.05). Our current study demonstrates that exposure to PCB126 through the mother\u27s milk does not affect short- or long-term body composition but impairs glucose tolerance in the short-term

    Towards comparable assessment of the soil nutrient status across scales-Review and development of nutrient metrics

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MNutrient availability influences virtually every aspect of an ecosystem, and is a critical modifier of ecosystem responses to global change. Although this crucial role of nutrient availability in regulating ecosystem structure and functioning has been widely acknowledged, nutrients are still often neglected in observational and experimental synthesis studies due to difficulties in comparing the nutrient status across sites. In the current study, we explain different nutrient-related concepts and discuss the potential of soil-, plant- and remote sensing-based metrics to compare the nutrient status across space. Based on our review and additional analyses on a dataset of European, managed temperate and boreal forests (ICP [International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests] Forests dataset), we conclude that the use of plant- and remote sensing-based metrics that rely on tissue stoichiometry is limited due to their strong dependence on species identity. The potential use of other plant-based metrics such as Ellenberg indicator values and plant-functional traits is also discussed. We conclude from our analyses and review that soil-based metrics have the highest potential for successful intersite comparison of the nutrient status. As an example, we used and adjusted a soil-based metric, previously developed for conifer forests across Sweden, against the same ICP Forests data. We suggest that this adjusted and further adaptable metric, which included the organic carbon concentration in the upper 20 cm of the soil (including the organic fermentation-humus [FH] layer), the C:N ratio and of the FH layer, can be used as a complementary tool along with other indicators of nutrient availability, to compare the background nutrient status across temperate and boreal forests dominated by spruce, pine or beech. Future collection and provision of harmonized soil data from observational and experimental sites is crucial for further testing and adjusting the metric

    Enantiomeric profiling of quinolones and quinolones resistance gene qnrS in European wastewaters

    Get PDF
    Wastewater-based epidemiology (WBE) was applied for the first time in seven cities across Europe with the aim of estimating quinolones consumption via the analysis of human urinary metabolites in wastewater. This report is also the first pan-European study focussed on the enantiomeric profiling of chiral quinolones in wastewater. By considering loads of (fluoro)quinolones in wastewater within the context of human stereoselective metabolism, we identified cities in Southern Europe characterised by both high usage and direct disposal of unused ofloxacin. In Northern European cities, S-(-)-ofloxacin loads were predominant with respect to R-(+)-ofloxacin. Much more potent, enantiomerically pure S-(-)-ofloxacin was detected in wastewaters from Southern European cities, reflecting consumption of the enantiomerically pure antibiotic. Nalidixic acid, norfloxacin and lomefloxacin were detected in wastewater even though they were not prescribed according to official prescription data. S,S-(-)-moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate were detected in wastewater due to metabolism of moxifloxacin. For the first time, average population-normalised ulifloxacin loads of 22.3 and 1.5 mg day 1000 people were reported for Milan and Castellón as a result of prulifloxacin metabolism. Enrichment of flumequine with first-eluting enantiomer in all the samples indicated animal metabolism rather than its direct disposal. Fluoroquinolone loads were compared with qnrS gene encoding quinolone resistance to correlate usage of fluoroquinolone and prevalence of resistance. The highest daily loads of the qnrS gene in Milan corresponded with the highest total quinolone load in Milan proving the hypothesis that higher usage of quinolones is linked with higher prevalence of quinolone resistance genes. Utrecht, with the lowest quinolones usage (low daily loads) had also one of the lowest daily loads of the qnrS gene. However, a similar trend was not observed in Oslo nor Bristol where higher qnrS gene loads were observed despite low quinolone usage

    Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth

    Get PDF
    Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily overlap. To overcome this challenge, we propose a metal-sown selective area growth (MS SAG) technique, which allows decoupling selective deposition and nucleation growth conditions by temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of InSb under Sb flux from In droplets, which act as a reservoir of group III adatoms, done at relatively low temperatures, favoring nucleation of InSb, and (iii) homoepitaxy of InSb on top of the formed nucleation layer under a simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal quality. We demonstrate that complex InSb nanowire networks of high crystal and electrical quality can be achieved this way. We extract mobility values of 10※000-25※000 cm V s consistently from field-effect and Hall mobility measurements across single nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic transport in a 440 nm long channel in a single nanowire under a magnetic field below 1 T. We also extract a phase-coherent length of ∼8 μm at 50 mK in mesoscopic rings

    Self-oligomerization Regulates Stability of Survival Motor Neuron Protein Isoforms by Sequestering an SCF\u3csup\u3eSlmb\u3c/sup\u3e Degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers

    Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities

    Get PDF
    Background: Monitoring the scale of pharmaceuticals, illicit and licit drugs consumption is important to assess the needs of law enforcement and public health, and provides more information about the different trends within different countries. Community drug use patterns are usually described by national surveys, sales and seizure data. Wastewater-based epidemiology (WBE) has been shown to be a reliable approach complementing such surveys. Method: This study aims to compare and correlate the consumption estimates of pharmaceuticals, illicit drugs, alcohol, nicotine and caffeine from wastewater analysis and other sources of information. Wastewater samples were collected in 2015 from 8 different European cities over a one week period, representing a population of approximately 5 million people. Published pharmaceutical sale, illicit drug seizure and alcohol, tobacco and caffeine use data were used for the comparison. Results: High agreement was found between wastewater and other data sources for pharmaceuticals and cocaine, whereas amphetamines, alcohol and caffeine showed a moderate correlation. methamphetamine and 3,4- methylenedioxymethamphetamine (MDMA) and nicotine did not correlate with other sources of data. Most of the poor correlations were explained as part of the uncertainties related with the use estimates and were improved with other complementary sources of data. Conclusions: This work confirms the promising future of WBE as a complementary approach to obtain a more accurate picture of substance use situation within different communities. Our findings suggest further improvements to reduce the uncertainties associated with both sources of information in order to make the data more comparable.Jose Antonio Baz Lomba, Stefania Salvatore, Richard Bade, Erika Castrignanò, Ana Causanilles, Juliet Kinyua, Ann-Kathrin McCall, Pedram Ramin, Nikolaos I. Rousis, and Yeonsuk Ryu acknowledge the EU Marie-Skłodowska Curie Initial Training Network SEWPROF (Marie Curie-FP7-PEOPLE, grant number 317205) for their Early Stage Researcher grant and Emma Gracia-Lor for her Experienced Researcher grant. We thank the people and agencies who assisted in the collection of the wastewater samples, in particular Pia Ryrfors and colleagues at Vestfjorden Avløpselskap (VEAS, Oslo, Norway)
    • …
    corecore