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Abstract 40 

Nutrient availability influences virtually every aspect of an ecosystem, and is a critical modifier of 

ecosystem responses to global change. Although this crucial role of nutrient availability in regulating 

ecosystem structure and functioning has been widely acknowledged, nutrients are still often 

neglected in observational and experimental synthesis studies due to difficulties in comparing the 

nutrient status across sites. In the current study, we explain different nutrient-related concepts and 45 

discuss the potential of soil-, plant- and remote sensing-based metrics to compare the nutrient 

status across space. Based on our review and additional analyses on a dataset of European, managed 

temperate and boreal forests (ICP Forests dataset), we conclude that the use of plant- and remote 

sensing-based metrics that rely on tissue stoichiometry is limited due to their strong dependence on 

species identity. The potential use of other plant-based metrics such as Ellenberg indicator values 50 

and plant-functional traits is also discussed. We conclude from our analyses and review that soil-

based metrics likely have the largest potential for successful inter-site comparison of the nutrient 

status. As an example, we used and adjusted a soil-based metric, previously developed for conifer 

forests across Sweden, against the same ICP Forests data. We suggest that this adjusted and further 

adaptable metric, which included the organic carbon concentration (SOC) in the upper 20 cm of the 55 

soil (including the organic fermentation-humus (FH) layer), the C:N ratio and pHCaCl2 of the FH layer, 

can be used as a complementary tool along with other indicators of nutrient availability, to compare 

the background nutrient status across temperate and boreal forests dominated by spruce, pine or 

beech. Future collection and provision of harmonized soil data from observational and experimental 

sites should facilitate further testing and adjustments of the metric.  60 

 

 

Keywords: nutrient status, nutrient availability, nutrient limitation, tree growth, soil nutrients, 

stoichiometry, plant functional traits, leaf economics spectrum, remote sensing, ICP Forests 
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1 | INTRODUCTION: RELEVANCE OF NUTRIENT AVAILABILITY TO GLOBAL CHANGE RESEARCH 

Macronutrients like nitrogen (N), phosphorus (P), and potassium (K), as well as essential 85 

micronutrients (e.g. zinc, copper, manganese, iron etc.) are critical for plants, microbes, and all life 

on Earth. It is long known that scarcity of essential nutrients limits plant growth and yield (Liebig, 

1841), but the influence of nutrients goes far beyond plant productivity. Nutrient availability 

influences virtually every aspect of an ecosystem. Ecosystem carbon cycling (Vicca et al., 2012; 

Fernández-Martínez et al., 2016), plant phenology (Cleland et al., 2006), plant diversity and 90 

community composition (Peñuelas et al., 2013; Harpole et al., 2016; Bes et al., 2018), plant-

herbivore (Borer et al., 2014) and plant-soil microbe interactions (Högberg et al., 2010), and the 

structure of trophic food webs (Elser et al., 2000; Laliberté et al., 2017) are all directly or indirectly 

influenced by nutrient availability. As a consequence, human activities that lead to for example soil 

acidification (i.e. acid deposition), shifts in the water balance (e.g. drainage, wetting), increases in 95 

atmospheric nitrogen deposition or eutrophication (e.g. fossil fuel combustion and fertilization) can 

strongly impact ecosystem properties and functioning (Bobbink et al., 2010; Peñuelas et al., 2013; 

Niu et al., 2016; Fernández-Martínez et al., 2017; Averill et al., 2018; Schulte-Uebbing & de Vries, 

2018). 

 100 

In the context of global change, nutrient availability is also a critical modifier of ecosystem responses 

to various environmental changes. It has been widely shown that the effect of elevated atmospheric 

CO2 depends on the nutrient status of the ecosystem. Under nutrient-rich conditions, plants are 

more likely to sustain a positive growth response to elevated CO2 (Körner, 2006; Huang et al., 2015; 

Terrer et al., 2016; 2018). Positive warming effects on plant growth can be intensified by enhanced 105 

nutrient availability following increases in mineralization (Strömgren & Linder, 2002; Dieleman et al., 
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2012), and nutrients can be important modulators of ecosystem responses to altered rainfall. The 

latter can follow from changes in nutrient dynamics (White et al., 2004; Dreesen et al., 2012; Ren et 

al., 2017), as well as from differences in plant carbon allocation associated with the nutrient status 

of an ecosystem (Gessler et al., 2017; Shi et al., 2018; Wang et al., 2018a). 110 

 

In spite of the central role of nutrients in ecosystem functioning and responses to climate change, 

nutrient availability is often not accurately accounted for in models, and in observational and 

experimental synthesis studies. N and P cycles are increasingly implemented in biogeochemistry 

models, but this still comes with high uncertainties related to data availability, understanding of 115 

nutrient cycling (Vicca et al., 2018), and quantification of nutrient limitations (Wang et al., 2010). In 

empirical studies, omission of nutrient availability from analyses of ecosystem functioning and its 

responses to global change can be deeply problematic, not only because it obfuscates our 

understanding, but also because it can even lead to misleading conclusions about the drivers of 

experimental results and of spatial and temporal variation (Cleveland et al., 2011). For example, 120 

Vicca et al. (2012) investigated factors underlying variation in forest biomass production efficiency 

(the ratio of biomass to GPP). By taking into account nutrient availability, they revealed that the 

direct (causal) influence of climate or stand age was being overestimated in earlier studies that did 

not include nutrient availability in their analyses (e.g. DeLucia et al., 2007).  

 125 

There are at least two key reasons why taking nutrient availability into account is more complicated 

than e.g. climate: (i) comprehensive datasets are lacking (Vicca et al., 2018), and (ii) a standardized 

measure of the nutrient status does not exist. For standardized metrics of the nutrient status to be 

easily and widely applied, they should be constructed only from variables that can be obtained at 

reasonable costs, and do not demand extensive labor efforts. At the same time, metrics should be as 130 

complex as necessary, including all the variables essential for wide application and considering 

important nonlinearities and thresholds. Unfortunately, such metrics have not yet been developed.  

 

In this study, we first clarify differences in concepts and clearly define the concept of the inherent 

nutrient status. Based on the available literature and our own analyses, we then discuss whether 135 

nutrient metrics should best be based on soil, plant or remote sensing data. As an example, we 

adjust an existing nutrient metric, such that it explains spatial variation in nutrient availability across 

temperate and boreal forests in Europe. Finally, we explore current limitations of this adjusted 

metric, and how it may be further improved in the future.  

 140 

2 | DEFINITION: WHAT IS THE NUTRIENT STATUS? 

Different concepts have been described in the scientific literature to define nutrient availability, with 

particularly nutrient limitation being widely used. In the strict sense, nutrient limitation represents 

the plant response to addition of specific nutrients (Liebig, 1841; Augusto et al., 2017). For example, 

if plants respond strongly to P addition, but not to N addition, they are considered P-limited but not 145 

N-limited. The magnitude of limitation is usually expressed as a response ratio, i.e. productivity of 

fertilized plots compared to controls in fertilization experiments (e.g. Sullivan et al., 2014; Fay et al., 

2015; Augusto et al., 2017). This plant response, and hence the magnitude of nutrient limitation, 

depends on the balance between the nutrient demand of the plants and nutrient supply (Fig. 1). The 

latter is determined by soil properties and nutrients as well as by species adaptations such as rooting 150 
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strategy and investment in mycorrhizal or N2-fixing symbionts. Because nutrient supply and demand 

vary among species and depend on climate and other environmental factors, nutrient limitation is 

not a constant value for a given soil (Legout et al., 2014). 

 

An alternative concept is the inherent soil nutrient status. In contrast to nutrient limitation, the 155 

inherent soil nutrient status reflects the potential nutrient supply of a soil as characterized by soil 

properties and nutrients (Fig. 1). Hence, the soil nutrient status does not directly depend on the 

species growing on the soil (although soil properties are eventually also shaped by vegetation 

characteristics such as plant community structure, age, species, litter quality and quantity; Sardans & 

Peñuelas, 2012; Cools et al., 2014). This short-term independence of plant species greatly facilitates 160 

meaningful inter-site comparison of ecosystem responses while taking nutrients into account, and 

allows to determine the modulating role of the nutrient status in ecosystem responses to 

environmental change. The fact that the soil nutrient status does not capture effects of plant 

adaptations such as the rooting strategy or symbiotic associations allows to disentangle and quantify 

their role across a range of nutrient statuses.  165 

 
Figure 1 Conceptual diagram illustrating different concepts related to nutrients. For simplicity, the influence of 

N2-fixing and mycorrhizal symbionts on nutrient supply is not explicitly included, but is in fact encompassed by 

“species”. In the present study, we discuss quantification of the soil nutrient status. 

 170 

Both nutrient limitation and nutrient status are of interest from an ecological perspective, and both 

concepts have their own advantages. While nutrient limitation may better clarify plant responses at 

the individual or population level, the nutrient status facilitates inter-site comparison of the role of 

nutrients and allows determining differences in sensitivities to variation in nutrient availability 

among species, ecosystems and biomes. In this study, the focus is on the comparison of soil-, plant- 175 

and remote sensing data in their potential to assess the nutrient status, and we propose a metric as 

a step forward in its quantification. For a recent synthesis of assessments of N and P limitation, we 

refer to Augusto et al. (2017). 
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3 | SOIL- vs PLANT-DERIVED INDICATORS OF THE NUTRIENT STATUS 180 

3.1| SOIL-DERIVED INDICATORS OF THE NUTRIENT STATUS 

 

Nutrient availability is rarely taken into account in large-scale studies focusing on inter-site 

comparison of ecosystem structure, functioning and responses to global change. From a soil 

perspective, quantifying the nutrient status to make such comparisons is complicated, in part, 185 

because nutrient availability is determined by the interplay of various nutrients and soil 

characteristics such as pH, texture, organic matter concentration and quality etc. Unlike temperature 

or precipitation, soil nutrient availability can therefore not be assessed by measuring one single 

variable. For example, at low pH, differences in N availability may be less influential than at optimal 

pH because at low pH plant growth is commonly limited by Al toxicity and/or P deficiency (IIASA & 190 

FAO, 2012). In addition, the availability of the individual elements is difficult to determine because 

they can be bound with variable strengths to minerals, or are partly locked up in organic matter prior 

to being released in bio-available form through decomposition. Different procedures exist to 

estimate, for example, available N and P, but results can differ considerably among methods (Binkley 

& Hart, 1989; Holford, 1997; Neyroud & Lischer, 2003). Moreover, no sufficiently accurate methods 195 

exist to quantify N and P availability in a comparable way across ecosystems. 

 

Although quantifying the availability of different nutrients is not straightforward, there are soil 

characteristics that are very indicative of the soil nutrient status (Vicca et al., 2018). In particular, soil 

organic matter concentration (SOM), texture (especially clay fraction), cation exchange capacity 200 

(CEC) and pH are critical. SOM is a source of nutrients and both organic matter and clay colloids are 

important exchange places for nutrients (Schroeder & Others, 1984; Roy et al., 2006). They 

determine the CEC of a soil, i.e. the capacity of the soil to store and exchange important nutrients 

such as NH4
+, K+, Mg2+ and Ca2+. Soil pH is especially important for P availability: at pH<5, P is strongly 

bound to Fe and Al oxides, while at pH>7, P becomes unavailable for most plants through complex 205 

formation with Ca2+ (Chapin et al., 2002; IIASA & FAO, 2012; Soil Survey Staff, 2014). Finally, the soil 

parent material and its weathering stage can also strongly influence the availability of nutrients such 

as P (Augusto et al., 2017) and even N (Houlton et al., 2018). Variation in the total bedrock 

concentration of P, and the presence of metal oxides or other soil substances that can bind P, have 

also been found to influence nutrient availability (Bol et al., 2016). Hence, the governing role of 210 

these discussed soil factors implies that comparison and quantification of the nutrient status across 

distinct ecosystems requires that soil physical and chemical properties are taken into account. 

 

The few studies that have taken the nutrient status into account have typically used an (indirect) 

indicator of N availability (e.g. C:N ratio in Alberti et al., 2015 or N stock in Stevens et al., 2015). 215 

While such approach may suffice in particular regions where variation in other soil characteristics 

influencing nutrient availability may be limited, in general, thorough comparison of the nutrient 

status would require taking into account multiple interacting soil properties. Therefore, in an 

attempt to get a more comprehensive indication of the nutrient status, a nutrient availability 

classification has been established based on the available but dispersed data (Vicca et al., 2012; 220 

Fernández-Martínez et al., 2014; Alberti et al., 2015; Campioli et al., 2015; Terrer et al., 2016). 

Although this approach, which separates nutrient-rich from nutrient-poor sites, has helped in gaining 
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a better understanding of the role of nutrient availability in terrestrial carbon cycling, it is a 

qualitative method based on distinct datasets. This has several limitations and it is, for example, not 

easily upscaled. 225 

 

To our knowledge, only few initiatives have been taken to express the soil nutrient status in a 

quantitative manner, comparable across sites at larger spatial scales. In a report on global agro-

ecological zones, the International Institute for Applied Systems Analysis (IIASA) and Food and 

Agricultural Organization of the United Nations (FAO – IIASA & FAO, 2012) present an adjustable 230 

metric of constraints on nutrient availability. The metric demands input on soil texture, SOM, pH and 

total exchangeable bases (TEB – cation equivalent of K, Ca, Mg, Na), which are then scored. The final 

metric value is then calculated by averaging the scores with a weighing function (weighing factors 

allow giving more weight to the most limiting factor, although the exact value of a weighing factor 

remains a subjective judgement). However, as this metric was primarily meant for agro-ecosystems, 235 

and only aimed to express constraints on nutrient availability, rather than the nutrient status itself, 

further testing of the metric was needed to e.g. evaluate its performance in non-agricultural 

systems, and assess potential adjustments. 

 

In a recent study, Van Sundert et al. (2018) evaluated and adjusted the original IIASA-metric against 240 

an extensive database of Swedish conifer forests, ideal for exploring the link between soil 

characteristics (available from the Swedish Forest Soil Inventory – Olsson, 1999; Stendahl, 2019) and 

productivity (available from the Swedish National Forest Inventory – Stendahl, 2019). After 

concluding that the original IIASA-metric could not explain spatial variation in productivity 

normalized for climate, forest age and species, they adapted the metric based on the observation 245 

that across Sweden, soil C:N ratio was a key variable explaining variation in normalized productivity, 

while the soil organic carbon concentration (SOC) and pH explained additional variation. Their metric 

consisted of soil pHwater, SOM and the C:N ratio. The final metric score for a site was then calculated 

for each of these three soil factors by filling in regression equations obtained from part of the 

dataset. While a worthwhile effort to start developing a nutrient metric, the study by Van Sundert et 250 

al. (2018) only considered boreal forests, which have particular conditions (e.g. N limitation and 

deposition, low soil pH). Its application in other environments thus remains to be tested, and further 

adjustments are needed. 

 

3.2| PLANT-DERIVED INDICATORS OF THE NUTRIENT STATUS 255 

 

Plants are the ultimate sensors of nutrient availability integrated over a certain time, and thus plant-

derived indicators may at first sight seem better candidates than soil-based metrics (Diekmann, 

2003; Zelený & Schaffers, 2012). Plant-based metrics exist or could be developed based on the 

species composition of a site (e.g. Ellenberg indicator values), plant traits, nutrient stoichiometry or 260 

resorption. However, as we argue below, these plant-based approaches are of limited use for large-

scale inter-site comparisons compared to soil-based metrics, primarily because of strong 

dependence on taxonomy and often limited distribution of scored species (Table 1). 

 

In 1974, Heinz Ellenberg presented a set of vegetation-based indicator values for inter-site 265 

comparisons of environmental features (Diekmann, 2003), applicable to natural forests and 

grasslands in Central and Northwestern Europe (Ellenberg et al., 1992; Thompson et al., 1993; 



 
 

 
Nutrient metrics in a changing world 

8 
 

Schaffers & Sykora, 2000). Knowledge of the link between species occurrence and the environment 

allowed him to establish a system of species-specific scores on a nine-point scale for seven 

environmental variables (i.e. Ellenberg indicator values or EIVs). In practice, EIVs for a site are 270 

calculated by weighing species-specific EIVs based on their presence/absence or their abundance 

(Schaffers & Sykora, 2000; Diekmann, 2003). In the context of nutrient metrics, the EIV for N or soil 

fertility has most relevance. However, even though good performance of this EIV as a nutrient 

availability indicator has been confirmed (e.g. Ewald & Ziche, 2017), caution is needed because EIV 

would be influenced not only by the nutrient status, but also factors such as moisture, aeration and 275 

disturbance (Schaffers & Sykora, 2000; Wagner et al., 2007). Other limitations of EIVs include that 

they only apply to natural ecosystems, cannot be used for comparison outside the European 

temperate zone (Godefroid & Dana, 2007), and problematic circularity emerges when EIVs are used 

as variables explaining variation in vegetation structure or function (Zelený & Schaffers, 2012). 

 280 

Plants have developed adaptations to grow and survive in specific environmental conditions, 

including nutrient availability. Instead of directly using the species, we can therefore quantify plant-

functional traits, i.e. morpho-physio-phenological characteristics commonly shared among species 

following similar growth strategies (McGill et al., 2006; Violle et al., 2007; Reich & Flores-Moreno, 

2017). Within the framework of the plant economics-spectrum, root and stem tissue density, and in 285 

particular leaf dry matter content (LDMC - Hodgson et al., 2011; Jager et al., 2015) emerge as 

promising traits for retrieving the nutrient status; all three typically decrease with increasing nutrient 

availability (Kramer-Walter et al., 2016).  

 

Compared to EIVs, traits offer the advantage that application is not by definition restricted to a 290 

particular region; plant traits are largely independent of plant functional type (but see He et al., 

2010; Hodgson et al., 2011; Roa-Fuentes et al., 2015) or biome (Wright et al., 2004). However, 

multiple studies have shown that all traits - including LDMC - are sensitive to multiple environmental 

factors, such as disturbance (Douma et al., 2012; Pakeman, 2013; Wigley et al., 2016) and climate 

(Pakeman, 2013; Simpson et al., 2016), complicating the disentangling of the nutrient status effect 295 

more than is the case with soil-based metrics. Disturbance and climate evidently modify soil 

characteristics as well, but these translate into shifts in the actual nutrient status, whereas changes 

in plant traits also reflect variation in e.g. light and water availability. Last, when measuring traits is 

not possible for practical reasons, a posteriori assigned average trait values from databases such as 

TRY (Kattge et al., 2011) may be used. This however comes with its further drawbacks such as 300 

neglecting potentially considerable phenotypic plasticity of species traits (Pakeman, 2013; Roscher 

et al., 2018). Related to this, while within-species plastic variation results from variation in nutrient 

supply and status, genetic processes underlay average trait values, such that traits generally reflect 

nutrient demand rather than nutrient supply (Peñuelas et al., 2019). 

  305 

While the soil fertility EIV and plant economics-spectrum allow making a direct estimate of the 

nutrient status, there is also the possibility of combining different nutrients in plants into one final 

metric representing the ‘general nutrient status’, analogous to the metric based on soil 

characteristics discussed in this article. Nutrient concentrations and stoichiometry of plant tissues 

indeed inform about the soil nutrient status. As the concentration of a certain nutrient in a plant or 310 

canopy typically increases with increasing availability in soil (as long as the nutrient is limiting – but 

see Ostertag, 2010; Peñuelas et al., 2013; Zechmeister-Bolternstern et al., 2015), assessing tissue 
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concentrations and stoichiometry is common practice to evaluate the plant nutrient status in 

ecological and agronomical research (Sullivan et al., 2014). However, multiple studies have shown 

that factors like phylogeny, phenology and climate are proximal determinants of plant nutrient 315 

concentrations and stoichiometry, rather than the soil nutrient status (Kokaly et al., 2009; Sardans et 

al., 2015; Balzotti et al., 2016; Di Palo & Fornara, 2017). Indeed, in large scale studies including 

several species and strong climate gradients, plant stoichiometry is explained in great part by long-

term evolutionary processes in which species adapted to soil nutritional conditions along the 

gradient (Asner et al., 2014; Sardans et al., 2015; 2016). As a result, two different species exhibiting 320 

high foliar N may be growing on soils with different soil nutrient status. Furthermore, stoichiometric 

flexibility strongly varies among species (Peñuelas et al., 2013; Zechmeister-Bolternstern et al., 2015; 

Peñuelas et al., 2019). Therefore, when comparing the nutrient status among ecosystems at large 

spatial scales, comprising large differences in species composition, plant stoichiometry is likely less 

suitable than soil characteristics (Vicca et al., 2018). 325 

 

Trends in the degree to which plants resorb N and P from senesced leaves has also been proposed as 

an indicator of relative nutrient limitation (e.g. McGroddy et al., 2004). N and P resorption from 

senesced leaves is an important strategy for plants to conserve nutrients, with an increase in 

resorption with lower availability (Kobe et al., 2005; Vergutz et al., 2012; Reed et al., 2012; Han et 330 

al., 2013; Sullivan et al., 2014; Brant & Chen, 2015). In addition, results from experiments suggest 

that the ratio of N resorption versus P resorption generally increases when N is limiting and 

decreases when P is limiting (van Heerwaarden et al., 2003; Yuan and Chen., 2015). Thus, an index 

for relative N and P limitations has been proposed based on the difference of N and P resorptions for 

woody plants (Han et al., 2013). Although this is a promising field of study to map relative N and P 335 

limitations globally, these analyses are generally species-specific, and the global factors driving these 

patterns (e.g. climate) have not been found across species and biomes (Reed et al., 2012), thus 

failing to widely characterize and map the nutrient limitation or status. 

 

Table 1 Limitations of potential plant-derived indicators of the nutrient status. 340 

Plant-derived indicator Limitations 

Ellenberg indicator value 

for N/soil fertility 

- also influenced by environmental factors other than nutrients 

- applicable to natural ecosystems only 

- spatial extent restricted to region of species distribution 

- circularity limits applications  

Plant-functional traits 

 

 

 

 

Tissue stoichiometry 

 

 

Nutrient resorption 

 

- also influenced by environmental factors other than nutrients 

- laborious in species rich communities 

- database-derived mean values ignore phenotypic plasticity 

- rather represents nutrient demand than inherent nutrient status  

 

- controlled by phylogeny, phenology and climate 

- needs combining of different variables into one single metric 

 

- controlled by phylogeny and climate 

- needs combining of different variables into one single metric 
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 345 

3.3 | SOIL OR PLANT DATA TO ASSESS NUTRIENT STATUS? 

From the overview above, we deduce that soil characteristics are likely more feasible candidates for 

inter-site comparison of the nutrient status than plant-derived data, as the latter depend strongly on 

taxonomy. In order to reinforce or refute this conclusion, we contributed our own analyses by 

making use of the European ICP Forests database (ICP Forests, 2010; http://icp-forests.net) for which 350 

data on tree growth, soil properties and nutrients (from the European Forest Soil Inventory - Fleck et 

al., 2016) and leaf stoichiometry were available (Fig. 2). The ICP Forests database contains 

homogeneous monitored forest plots representative of the most important managed European 

forest types, and were previously selected for investigating the effects of acid rain (Table S1). 

Eventually, we compiled a dataset comprising 77 stands for which tree growth was previously 355 

calculated (Camino-Serrano et al., 2016), and measurements of soil properties and nutrients and leaf 

stoichiometry were available. The sites were dominated by either Common beech (Fagus sylvatica 

L.), Pedunculate oak (Quercus robur L.), Scots pine (Pinus sylvestris L.) or Norway spruce (Picea abies 

(L.) H. Karst.).  

 360 

 
Figure 2 Location of the 77 ICP Forests sites used for the main analyses in this study. Dominant tree species 

growing on the sites were Common beech (Fagus sylvatica L.), Pedunculate oak (Quercus robur L.), Scots pine 

(Pinus sylvestris L.) or Norway spruce (Picea abies (L.) H. Karst.). 

 365 

We used the ICP Forests data to verify the use of soil data vs foliar nutrient concentrations and 

stoichiometry as indicators for the nutrient status across a range of forest, soil and climate types. 

Specifically, we (i) performed regression equations within and across species to link key soil vs leaf 

stoichiometry data with climate-, age- and species-normalized productivity (productivity was chosen 

as the response variable as it is well-known to respond strongly to increasing nutrient availability 370 
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(Chapin, 1980)), and (ii) performed principal component analysis (PCA) on the soil and leaf data to 

compare and visualize species dependence. More details regarding the ICP Forests data, and the 

normalization of productivity for climate, age and species are provided in the supplement. 

Regression analyses per species indicated that for soil data, across beech forests, a model including 

soil organic carbon concentration (SOC – negative effect) and mineral soil C:P ratio (negative effect) 375 

performed best at explaining variation in normalized productivity (R² = 57%; Table S10). In both 

European spruce (Table S11) and pine forests (Table S12), a model with only the negative influence 

of organic layer C:N ratio was selected (R² = 43% and 42%, resp.), and in an analysis combining all 

species, organic layer C:N, SOC and their interaction was selected (R² = 17%, Table S13). We initially 

used exactly the same subset of the ICP Forests database to optimally compare the potential of leaf 380 

stoichiometry with that of soil characteristics. For beech and pine, these analyses indicated no 

potential of foliar data to explain variation in normalized productivity (Table S14 and S16), whereas 

for spruce, N:P ratio and N concentration (which showed no collinearity) exerted both a positive 

influence, together explaining 32% of the variation (Table S15). Finally, when combining all species in 

one analysis, no variation in normalized productivity was explained by any leaf nutrient or ratio 385 

(Table S17).  

 

For stoichiometry, similar, but perhaps more clear results were obtained from an additional analysis 

on a more elaborate subset of the ICP Forests database (including sites that were lacking the 

necessary soil data, but with stoichiometry available): for beech, foliar nutrient concentrations were 390 

again not significantly related to normalized productivity, but for spruce and pine, foliar nutrients did 

relate to normalized productivity (R² = 25% and 28%, resp.). However, the combination of nutrients 

best explaining variation differed among species, such that in an analysis combining all species, foliar 

stoichiometry explained merely 4% of normalized productivity here (Table S18). Species differences 

in stoichiometry clearly lay at the base of the discrepancy in variation explained within vs across 395 

species, whereas species-dependence of soil characteristics was much less pronounced (Fig. 3a vs 

3b). Our results thus confirm that when multiple species are involved, foliar elemental composition 

is primarily determined by taxonomy, therefore limiting the use of foliar stoichiometry as an 

indicator of large-scale variation in the nutrient status.   

 400 

  
Figure 3 Principal component analysis on (a) key soil variables (sd for PC1 = 1.51, sd for PC2 = 1.23), and (b) 

foliar stoichiometry data in the European ICP Forests dataset (sd for PC1 = 2.06, sd for PC2 = 1.12). These soil 

variables in particular were chosen because of their link with the soil nutrient status (e.g. Van Sundert et al., 

2018), and our observation during exploratory analyses that organic layer characteristics in particular explain 405 

(a) (b) 

https://paperpile.com/c/wZ7akl/m4me+ZBdR
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variation in normalized productivity (e.g. Table S11). Right-skewed variables were log-transformed. 

Abbreviations: SOC = soil organic carbon concentration (%) in the upper 20 cm of the soil, starting on top of 

the organic layer; CNorg = organic layer carbon to nitrogen ratio; pHorg = organic layer pH. Corresponding 

correlations are presented in Table S19 for panel a, and in Table S20 for panel b. 

 410 

 

4| REMOTE SENSING-DERIVED INDICATORS OF THE NUTRIENT STATUS  

Three decades ago, researchers began using remote sensing to estimate leaf and canopy traits. 

While particular nutrients (mainly N – Filella et al., 1995; Serrano et al., 2002; Kokaly et al., 2009; 

Loozen et al., 2018) have been estimated frequently, other traits relevant to the nutrient status, 415 

such as LDMC, can be estimated as well but with low accuracy (Homolova et al., 2013). For this 

reason, the focus in this review section is merely on stoichiometry. By far the most common remote 

sensing method involves employment of passive hyperspectral sensors (but see Munoz-Huerta et al., 

2013), on ground platforms (e.g. Peñuelas et al., 1994; Serbin et al., 2014), airplanes (e.g. Serrano et 

al., 2002; Mitchell et al., 2012; Wang et al., 2018b) or satellites (e.g. Ollinger et al., 2008; Loozen et 420 

al., 2018), depending on the desired resolution and scope of the study. Typically, concentrations of a 

particular element are estimated per pixel after an empirical calibration procedure  in which 

reflectance in the 400-2400 nm range is matched with concentrations determined by standard lab 

procedures (Homolova et al., 2013). Although this method often yields high R²s within studies, 

estimating leaf and canopy nutrient concentrations at larger spatial scales is challenging not only 425 

because fine spatial resolution is needed to capture relevant and occasionally large small-scale 

variation in nutrient availability (e.g. Porder et al., 2005), but also because the empirical functions 

are typically overfitted to the data considered in the respective study (Verrelst et al., 2015). 

Alternatively to regressions, mechanistic radiative transfer models (RTMs) could be used in the 

future to avoid this problem, but research on RTM inversion to retrieve nutrient concentrations at 430 

the canopy level is still in its infancy (Wang et al., 2018b; but see Porder et al., 2005). 

 

Using airborne based and satellite imagery, Ollinger et al. (2008) discovered a strong positive 

correlation between near infrared (NIR) reflectance (800-2500 nm) and %N in the canopy for North 

American forests. This was one of the first studies to remotely estimate %N of the canopy at a large 435 

spatial scale. The study was heavily criticized though, as the link between NIR reflectance and %N 

may be merely a correlation resulting from the influence of available N on vegetation structure 

(Knyazikhin et al., 2012 and e.g. Nunes et al., 2017). Even though indirect effects dominating the NIR 

reflectance-%N relationship are not necessarily problematic (Ollinger et al., 2013), caution is needed 

when using this remote sensing derived %N for a metric because biases may occur when for instance 440 

species composition (and therefore canopy structure) is modified by management, while N 

availability remains the same. 

 

Although remote sensing is a promising tool for rapid assessment of plant tissue concentrations, its 

use for estimating stoichiometry at large spatial scales is currently limited because of biases and 445 

considerable uncertainties. Furthermore, the bulk of literature has so far focused on N (but see e.g. 

Porder et al., 2005), with remote sensing of nutrients such as P and K in leaves and canopies even 

less developed than for N (Homolova et al., 2013). In the context of nutrient metrics, remote sensing 

can be used as an alternative to lab-based measurements for determining plant tissue stoichiometry 

for purposes where the benefits of remote sensing (rapid estimation at large spatial scale) outweigh 450 
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the disadvantages compared to destructive measurements. In the end, irrespective of whether 

stoichiometry was determined optically or destructively, the result is an estimate depending on (a 

mixture of) species. Therefore, as discussed earlier, the dependence of the nutrient status-

stoichiometry link on species and their plasticity limits the use of large-scale remote sensing derived 

stoichiometry data.  455 

 

Finally, Fisher et al. (2012) tried to estimate global nutrient limitation by comparing remotely-sensed 

productivity with modelled maximum productivity determined by light and water availabilities. 

However, this approach aims to quantify nutrient limitation rather than nutrient status, and more 

importantly, their proposed global map still contains considerable inaccuracies (e.g. it suggests no 460 

nutrient limitation in Eurasian boreal forests, where strong N limitation is in reality widespread –

Högberg et al., 2017). We conclude that remote sensing may in some cases be a practical way to 

derive plant tissue stoichiometry (e.g. Asner et al., 2015), but at least for now, it is not possible to 

accurately compare the nutrient status among sites based on remote sensing data alone. 

 465 

 

5 | EXAMPLE: A SOIL-BASED METRIC OF THE NUTRIENT STATUS 

Based on our review and analyses above, we concluded that soil data likely have highest potential to 

develop metrics of the nutrient status. As an example of how such metric may be used and 

improved, we evaluate and adjust here a soil-based metric developed by Van Sundert et al. (2018), 470 

such that it explains considerable variation in normalized productivity not only in the original 

Swedish database it was developed from (Table S2), but also in the European ICP Forests. As 

mentioned in the section on soil indicators, their metric consisted of soil pHwater, SOM and the C:N 

ratio (all mass-based averaged over the top 20 cm of the soil, including the organic fermentation-

humus (FH) layer; note that soil texture was not included in this metric because it was not 475 

significantly correlated with normalized productivity). Specifically, a score was calculated for each of 

these three soil factors by filling in the respective simple empirical regression equations, and 

including a minimum constraint representing the minimum climate-normalized productivity found 

across the dataset: 

 480 

SOC score = max(-0.18 * (ln(SOC0-20cm) - ln(2.3))² + 0.525, -5.65)     (1) 

C:N score = max(-0.08 * CN0-20cm + 2.1, -5.65)       (2) 

pH score = max(-0.9 * (pHwater,0-20cm - 4.67)² + 0.6, -5.65)      (3) 

 

The metric for any given (boreal) forest soil was then calculated by averaging the partial scores, 485 

giving more weight to the variable with the lowest score: 

 

Metric score = 0.5 * lowest score + 0.5 * mean (other 2 scores)     (4) 

 

This metric explained up to 21% of the variation in normalized productivity for forests in Sweden 490 

(Van Sundert et al., 2018). 

 

To investigate the metric application for a wider range of conditions than merely boreal forests, we 

test and adjust here the soil-based metric against the ICP Forests data. Finally, we also evaluate the 
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metric against data from a global grassland database to explore its current performance for distinct 495 

environments and identify soil parameters for future improvements of the metric. 

 

5.1 | Evaluation of the earlier nutrient metric 

5.1.1 | Performance of the earlier metric 

The metric developed for Sweden by Van Sundert et al. (2018) could not significantly explain 500 

variation in normalized productivity across European forests (Table 2), and neither could the original 

metric proposed by IIASA (Table S21). Even when separately considering pine and spruce forests, for 

which the metric was initially developed, the metric could not explain any variation in normalized 

productivity. In other words, the metric provided in Van Sundert et al. (2018) cannot be used as a 

general indicator of the nutrient status across European forests outside Sweden. 505 

 

5.2 | Adjustment of the earlier metric 

5.2.1 | Adjusting the earlier metric 

One key difference between the Swedish forest soils and the forests elsewhere in Europe is the 

organic layer thickness. While ~70% of the Swedish forest sites had an organic layer thicker than 5 510 

cm, and for ~40% of the sites this layer was > 10 cm thick, most sites of the ICP Forests dataset used 

here had an organic layer of 5 cm or less (Fig. S2). Given that the organic layer in the Swedish forests 

dominated the earlier analyses for the development of the metric, and organic layer C:N ratio and 

pH explained more variation than mineral soil C:N and pH (Table S22), we tested if an adjusted 

metric including organic layer characteristics (1) performed similarly well for the Swedish dataset as 515 

the metric of Van Sundert et al. (2018), and (2) whether this adjusted metric could explain variation 

in normalized productivity for the ICP Forests dataset. 

 

This adjusted metric was developed as in Van Sundert et al. (2018), but using the C:N ratio and pH of 

the organic FH layer instead of the top 20 cm of the soil profile (including FH layer). We opted to use  520 

south Sweden as the calibration dataset (similar to Van Sundert et al., 2018), because  variation in 

both productivity and soil characteristics was largest for that region, and because more data were 

available for south Sweden than for ICP Forests. Regressions were thus fitted to the data, but now 

using organic-layer variables to calculate the partial scores. Additionally, we fixed the optimum for 

soil pHCaCl2,org a priori to 4.5, since this value was more clearly suggested by the European ICP data 525 

than the Swedish data, given a wider range of soil types with higher pH (Fig. S3a vs b; note that this 

pH optimum is low at the global scale, suggesting that further adjustments may be necessary if the 

metric would be updated for wider application). Finally, for SOC, we kept the top 20 cm layer (where 

most fine roots are found - Göransson et al. 2006), which can be regarded as the contribution of the 

organic layer to the upper 20 cm of the soil, or the abundance of nutrient supplying organic matter 530 

mixed in the upper 20 cm of mineral soil where an organic layer is (nearly) absent. The adjusted 

metric consisted of the following equations (note that pHCaCl2 was used here instead of pHwater 

because of data availability): 

 

SOC score = max(-0.18 * (ln(SOC0-20cm) - ln(2.3))^2 + 0.525, -5.65)     (5) 535 

C:N score = max(-1.8 * ln(CNorg) + 5.7, -5.65)       (6) 

pH score = max(-0.52 * (pHCaCl2,org - 4.5)² + 0.9, -5.65)      (7) 

https://paperpile.com/c/wZ7akl/GrFB
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The final score of the adjusted metric is then calculated as in Eq. 4. For the southern Swedish 

validation dataset, performance of this adjusted metric was similar to that of the metric presented in 540 

Van Sundert et al. (2018; see Table 2). Moreover, for some natural gradients in soil characteristics 

and productivity representing subsets of this Swedish dataset, the adjusted metric even performed 

better than the original one (Table S23). 

 

5.2.2 | Performance of the adjusted metric 545 

For the ICP Forests dataset, the adjusted metric explained 12% of the variation in normalized 

productivity when including all plots in the analysis, i.e. combining forests dominated by spruce, 

pine, beech and oak. When analyses were performed per species, this increased up to 19% for 

spruce, 61% for pine and 31% for beech (Fig. 4; Table 2; for oak, the number of sites (n = 8) and 

associated variation in normalized productivity were too small for a robust analysis). Note that even 550 

with a perfect metric, R² would be unlikely to approach 1 because even though direct influences of 

climate and stand age were removed, there is still uncertainty in the response variable. Such 

uncertainty may for example arise from variation in soil water and oxygen availability, the 

normalization procedure of productivity for climate and age, and uncertainty in estimates of 

productivity and soil characteristics. Hence, especially the rather high species-specific R² values 555 

increase the confidence in this metric. For a more elaborate discussion on uncertainties, we refer to 

Van Sundert et al. (2018). 

 

Even though across all species, the organic layer C:N ratio was typically most influential in the final 

metric score (i.e. the C:N score had the highest weight in equation 4), species-specific analyses may 560 

be more appropriate. Relationships between productivity and the metric can differ among species 

(Table 2, Fig. 4), hence confounding the analysis combining all species. Moreover, species also 

influence soil characteristics (e.g. Cools et al., 2014), such that low vs high values along the 

horizontal axis of Fig. 4a may be influenced by different species (e.g. metric values for pine were 

generally lower than values for beech – Fig. 4c vs 4d). 565 
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 585 

 

Table 2 Comparison of nutrient metric abilities to explain variation in normalized productivity across different 

datasets. The adjusted metric refers to the metric presented in the current paper (Eqs. 5-7 in Eq. 4), whereas 

the regression equation represents a multiple regression model using the same soil variables as the adjusted 

metric (Eq. 8). All three metrics were calibrated using data of southern Sweden. For the Swedish data, a 590 

validation subset (228 plots) of southern Swedish forests was used instead of the dataset of entire Sweden to 

avoid heteroscedasticity-induced artifacts (see Van Sundert et al. (2018)). Hence, the results for Sweden here 

represent the validation subset for southern Sweden. Errors represent the s.e.m. 

Dataset Explanatory power of 

metric presented in 

Van Sundert et al. 

(2018) 

Explanatory power of 

adjusted metric 

Explanatory power of 

regression equation 

Swedish conifer forests 

(southern Sweden only) 

slope = 1.4 ± 0.2 

P < 0.001 *** 

R² = 0.19 

n = 228 

slope = 1.6 ± 0.2 

P < 0.001 *** 

R² = 0.17 

n = 228 

slope = 0.9 ± 0.1 

P < 0.001 *** 

R² = 0.22 

n = 228 

European forests 

 

 

 

 

European spruce forests 

 

 

 

 

European pine forests 

 

 

 

 

European beech forests 

 

 

 

 

Grasslands worldwide 

P = 0.32 

n = 71 

 

 

 

P = 0.65 

n = 22 

 

 

 

P = 0.86 

n = 21 

 

 

 

slope = 2 ± 1 

P = 0.09 (*) 

R² = 0.10 

n = 21 

 

slope = 0.16 ± 0.06 

P = 0.01 * 

R² = 0.07 

n = 77 

slope = 3 ± 1 

P = 0.001 ** 

R² = 0.12 

n = 77 

 

slope = 5 ± 2 

P = 0.02 * 

R² = 0.19 

n = 23 

 

slope = 8 ± 1 

P < 0.001 *** 

R² = 0.61 

n = 22 

 

slope = 8 ± 2 

P = 0.003 ** 

R² = 0.31 

n = 24 

 

slope = 0.23 ± 0.08 

P = 0.008 ** 

R² = 0.08 

n = 77 

slope = 1.7 ± 0.5 

P = 0.002 ** 

R² = 0.11 

n = 77 

 

slope = 2 ± 1 

P = 0.03 * 

R² = 0.17 

n = 23 

 

 slope = 5 ± 1 

P < 0.001 *** 

R² = 0.50 

n = 22 

 

 slope = 2.0 ± 0.9 

P = 0.04 

R² = 0.14 

n = 24 

 

slope = 0.08 ± 0.03 

P = 0.006 ** 

R² = 0.09 

n = 77 

 

For pine and spruce, residual variation of the relationship of normalized productivity and the 595 

nutrient metric was not significantly explained by any of the three soil factors included in the metric 

(Table 3), indicating that the adjusted metric developed for Sweden can also be used for central and 

western European pine and spruce forests. For beech, the residual variation correlated significantly 

with SOC (Table 3), suggesting that despite the strong correlation between normalized productivity 

and the adjusted metric for these forests, the influence of SOC may not be accurately implemented. 600 

The negative relationship between the residual variation and SOC points towards a potential bias in 



 
 

 
Nutrient metrics in a changing world 

17 
 

the incorporated influence of SOC, with the SOC influence being increasingly overestimated as the 

metric value increases.  

 
Figure 4 Normalized productivity versus the adjusted soil nutrient metric for (a) all forests, (b) spruce forests, 605 

(c) pine forests and (d) beech forests. Errors on the slope estimates represent the s.e.m. Shaded areas around 

the regression lines represent 95% confidence intervals. 
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 620 

 

 

 

 

 625 

 

(a) (b) 

(c) (d) 

Slope = 3 ± 1 
P = 0.001 ** 
R² = 0.12 
n = 77 

Slope = 5 ± 2 
P = 0.02 * 
R² = 0.19 

n = 23 

Slope = 8 ± 1 
P < 0.001 *** 
R² = 0.61 
n = 22 

Slope = 8 ± 2 
P = 0.003 ** 
R² = 0.31 
n = 24 
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Table 3 Tests of variable implementation in the adjusted nutrient metric presented in this study. Species-

specific associations between residuals of normalized productivities in Fig. 4 and soil variables in the metric are 

shown. Aggregated results for all forests, dominated by varying species, are not shown because of differential 630 

performance of the metric and its variable implementation among species. Abbreviations: SOC = soil organic 

carbon concentration; soil C:N ratio = soil carbon to nitrogen ratio. For the grassland dataset, mineral soil data 

were used to calculate the metric because no organic layer data were available. Errors represent the s.e.m. 

Dataset Residuals of Fig. 4 

panel 

ln SOC (%) ln organic layer 

C:N ratio 

pH 

European spruce 

forests 

(n = 23) 

 

European pine 

forests 

(n = 22) 

 

European beech 

forests 

(n = 24) 

b 

 

 

 

c 

 

 

 

d 

P = 0.29 

 

 

 

P = 0.43 

 

 

 

slope = -1.7 ± 0.8 

P = 0.04 * 

R² = 0.14 

slope = -5 ± 2 

P = 0.08 (*) 

R² = 0.10 

 

P = 0.69 

 

 

 

P = 0.17 

P = 0.11 

 

 

 

P = 0.68 

 

 

 

P = 0.64 

Grasslands 

worldwide 

(n= 77) 

 P = 0.28 

 

 

P = 0.58 

 

 

P = 0.96 

 

 635 

5.2.3 | The adjusted metric versus multiple regressions 

The nutrient metric follows the rationale that nutrient availability depends more strongly on the soil 

factor that is most limiting, as that factor receives a higher weight (see equation 4; note however 

that the exact value of weighing factors is subjective). This is meaningful from a biogeochemical 

point of view, because, for example, differences in N availability may be more influential at optimal 640 

pH than at low pH where plant growth is commonly limited by Al toxicity and/or P deficiency. But 

does this metric indeed perform better than a multiple regression based on the same variables, or 

does it only make calculations more complicated? To test this, we fitted a multiple regression using 

the same three soil factors as the adjusted metric to normalized productivity (Norm) of the 

calibration dataset for southern Sweden (quadratic terms were included for SOC and pH to 645 

represent likely optima – e.g. Van Sundert et al., 2018): 

 

Norm = a * ln (C:Norg.) + b * ln² (SOC0-20cm) + c * ln (SOC0-20cm) + d * pH²CaCl2,org. + e * pHCaCl2,org. + f, (8)     

 

with a = -1.1 (± 0.4) , b = -0.21 (± 0.08), c = 0.5 (± 0.4), d = – 0.5 (± 0.2), e = 4 (± 1), and f = - 4 (± 4). 650 

 

Not surprisingly, performance of this regression equation for the metric calibration dataset of 

southern Sweden and gradients in Sweden was similar, or even slightly better, than that of the 

metric (Tables 2 and S23). However, the multiple regression explained consistently less variation 

than the metric for the ICP dataset (Table 2). Moreover, variable implementation in the metric was 655 

better according to the ICP data per species (Table 3 vs S24). Finally, use of the metric instead of a 
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multiple regression approach has the advantage that future updating based on other datasets is 

more practical. In the metric, additional soil variables can simply be introduced by a new partial 

equation (cf. Eqs. 1-3 and 5-7) without necessarily modifying the equations of pre-existing variables 

in the metric. Furthermore, the final weighing in the metric (Eq. 4) represents a type of interaction in 660 

which the worst scoring soil parameter gains most importance. This is much more complicated to 

achieve with multiple regression. 

 

6 | APPLICATIONS OF THE SOIL-BASED METRIC AND FUTURE PROSPECTS 

Based on a literature review and additional analyses, we illustrated that strong species-dependence 665 

limits the use of plant and remote sensing data when performing inter-site comparisons of the 

nutrient status. We therefore suggest that soil data offer more potential for use in nutrient status 

metrics, and presented a soil-based metric for temperate and boreal forests as an example. In this 

section, we discuss applications of this metric and potential for future improvements. 

 670 

Our analysis indicated that the adjusted metric developed for pine and spruce forests explains a 

significant proportion of the variation in normalized productivity of beech forests. However, our 

analyses on beech suggested that the influence of SOC may not be accurately implemented and 

further adjustments to the metric may be needed in this regard. Interestingly, we also found that for 

beech, the organic layer and especially mineral soil C:P ratio (but not soil total P – Table S25) 675 

correlated negatively with normalized productivity (Fig. 5, see also Table S10), while for the other 

species the influence of C:P was much less pronounced (Table S19). This result is in agreement with 

studies showing that P limitation in European beech forests is common (e.g. Talkner et al., 2015; 

Lang et al., 2017). Adding the C:P ratio to the metric and perhaps modifying the relationship for SOC 

may thus further improve metric performance. However, further adjusting the metric based on the 680 

ICP Forests database alone is not possible because of the limited number of sites. 

 

 
Figure 5 Normalized productivity of European beech forests versus (a) organic and (b) mineral soil C:P ratio. 

Aqua regia extractable P was taken here as the best available proxy for soil total P, such that actual total P as 685 

derived from the acid digestion method may have been underestimated (ISO 11466, 1995; Ivanov, 2012). 

Errors on the slope estimates represent the s.e.m. Shaded area around the regression curve represents 95% 

confidence intervals. 

 

(a) (b) 
Slope = -0.010 ± 0.004 

         P = 0.03 * 
         R² = 0.14 

n = 28 

Slope on log scale = -3.9 ± 0.8 
         P < 0.001 *** 

         R² = 0.45 
n = 27 
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 690 
Figure 6 Normalized productivity versus the adjusted metric in worldwide distributed grasslands. Since SOC 

data were not available for most grassland sites, total C was used to calculate equation 5 instead (grasslands 

on calcareous soils were omitted from the analysis to ensure total C approximated SOC). Because of positive 

skewness, grassland productivity was log-transformed before normalizing (Table S7). Although model 

assumptions of normality of residuals, linearity, homoscedasticity and absence of outliers were met, nutrient 695 

metric scores in this dataset were negatively skewed. We therefore verified robustness of the result by 

transforming the X-axis to log(-Adjusted nutrient metric score + 1), which yielded similar results (P = 0.004 **; 

R² = 0.09). The error on the slope represents the s.e.m. Shaded area around the regression line represents 95% 

confidence intervals. 

 700 

To test the application of the metric in ecosystems other than forests, we collected data from 

grasslands worldwide (Table S3). Via a literature search on web of science (see SI) we collected ANPP 

and the necessary combination of soil data for 77 grasslands. After normalizing ANPP using the SEM 

approach (see Table S7), and calculating the metric (using upper mineral soil data in equations 5-7 

since grasslands usually lack an organic layer), we found a significantly positive relationship between 705 

normalized ANPP and the adjusted metric, albeit with a low R² (Fig. 6; Table 2). Residual variation 

was not explained by any of the variables included in the metric, hence supporting their correct 

implementation. Interestingly, we found a borderline significant positive correlation between 

residual variation and soil total P (R² = 0.04). This suggests that adding soil P to the metric may 

further improve its performance. More data, preferably across local gradients to avoid confounding 710 

effects of e.g. climate, are needed to explore the incorporation of soil P in the metric. 

 

The new nutrient metric presented here can be used in observational and experimental temperate 

and boreal (conifer) forests with an organic soil horizon. Application in other ecosystems remains to 

be tested, and especially tropical forests may pose a key challenge because these systems often lack 715 

organic soil layers and there is often efficient nutrient recycling from litter while the infertile mineral 

soil is largely bypassed (Legout et al., 2014; Grau et al., 2017). Nevertheless, the positive effect of P 

on normalized productivity in both beech forests and grasslands worldwide indicates further 

potential for improvement of the metric by more explicitly incorporating P (which was not possible 

within this study because no P data are available for the Swedish dataset used for the metric 720 

development). 

 

Slope = 0.23 ± 0.08 
P = 0.008 ** 
R² = 0.08 
n = 77 
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The inclusion of additional parameters (e.g. soil P, or texture, which did not have an effect in the 

current datasets but might in others), further testing of the metric (e.g. against data from tropical 

forests, and unmanaged ecosystems), and later applications of the metric (e.g. meta-analyses 725 

incorporating the influence of the nutrient status) require comprehensive and harmonized soil 

datasets. At a national scale, country-wide (forest) soil inventories may be used also in future 

studies, as we exemplified with the Swedish dataset. At larger spatial scales, however, combining 

national inventories may become complicated, because of incompatible procedures, different 

variables measured etc. For large-scale modeling studies, initiatives such as SoilGrids (Hengl et al., 730 

2017) might prove useful for upscaling (Dai et al., 2018), although finer spatial resolutions may be 

needed depending on the aim of the model and study. In general, harmonized soil datasets are 

rarely available and we therefore call on the scientific community to collect and provide these data 

for existing and future experiments and field sites. For more information regarding data needed to 

create harmonized datasets, useful for both data-synthesis and modeling communities, we refer to 735 

Vicca et al. (2018). 

 

The (current) components of the nutrient metric respond only slowly to environmental changes, 

such that it cannot be used to capture quick changes in the soil nutrient status, for example induced 

by (experimentally imposed or natural) global change. Determining the variables included in the 740 

metric would nevertheless still be useful in such experiments to investigate long-term changes that 

eventually occur (e.g. Jandl et al., 2012; Zechmeister-Boltenstern et al., 2015). For capturing quick 

(sometimes transient) changes in the nutrient status, also other data should be collected, such as 

supply rates derived from resin membranes in the soil (Qian & Schoenau, 2002; Meason et al., 2009; 

Dijkstra et al., 2012; Andersen et al., 2014), data from soil based nutrient extractions (e.g. Vicca et 745 

al., 2018) and/or from shifts in tissue stoichiometry (Dijkstra et al., 2012; Sardans & Peñuelas, 2012; 

Peñuelas et al., 2013; Urbina et al., 2014). Global change induced shifts in such variables are 

however difficult to compare across sites in a quantitative manner (e.g. Sardans et al., 2017). Ideally, 

future metrics should not only grasp large-scale spatial variation in the nutrient status, but also 

responses to environmental change. 750 

 

7 | CONCLUSIONS 

A wide range of research shows that nutrient availability strongly influences terrestrial ecosystems 

and shapes their responses to atmospheric, climatic and other environmental changes. Nonetheless, 

our understanding of nutrient controls remains poorly quantified, because we lack the tools for such 755 

quantification. There is thus a clear need for nutrient metrics that allow comparing the nutrient 

status across experimental and observational sites. Through a literature review and data analyses, 

we demonstrated that such a metric is best based on soil characteristics, rather than on plant- or 

remote sensing-derived indicators, because the link between plant traits and nutrient status strongly 

depends on factors like phylogeny, phenology and climate. Here, we presented a soil-based metric, 760 

demanding data on SOC, organic layer C:N ratio and pH, that explains considerable variation in the 

nutrient status across northern and central European managed spruce, pine and beech forests. We 

propose that this nutrient metric can, in combination with other measures of nutrient availability, be 

used in inter-site comparisons across spruce and pine (and with caution also beech) forests in the 

temperate and boreal biomes. Application of our adjusted metric to other ecosystem types such as 765 
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tropical forests and grasslands remains to be verified, and future improvements may be possible 

through for example more explicit incorporation of P.  
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