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Abstract 

Wastewater-based epidemiology (WBE) was applied for the first time in seven cities across Europe 

with the aim of estimating quinolones consumption via the analysis of human urinary metabolites in 

wastewater. This report is also the first pan-European study focussed on the enantiomeric profiling 

of chiral quinolones in wastewater. By considering loads of (fluoro)quinolones in wastewater within 

the context of human stereoselective metabolism, we identified cities in Southern Europe 

characterised by both high usage and direct disposal of unused ofloxacin. In Northern European 

cities, S-(-)-ofloxacin loads were predominant with respect to R-(+)-ofloxacin. Much more potent, 

enantiomerically pure S-(-)-ofloxacin was detected in wastewaters from Southern European cities, 

reflecting consumption of the enantiomerically pure antibiotic. Nalidixic acid, norfloxacin and 

lomefloxacin were detected in wastewater even though they were not prescribed according to 

official prescription data. S,S-(-)-moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate were detected 

in wastewater due to metabolism of moxifloxacin. For the first time, average population-normalised 

ulifloxacin loads of 22.3 and 1.5 mg day-1 1000 people-1 were reported for Milan and Castellón as a 

result of prulifloxacin metabolism. Enrichment of flumequine with first-eluting enantiomer in all 

the samples indicated animal metabolism rather than its direct disposal. Fluoroquinolone loads were 

compared with qnrS gene encoding quinolone resistance to correlate usage of fluoroquinolone and 

prevalence of resistance. The highest daily loads of the qnrS gene in Milan corresponded with the 

highest total quinolone load in Milan proving the hypothesis that higher usage of quinolones is 

linked with higher prevalence of quinolone resistance genes. Utrecht, with the lowest quinolones 

usage (low daily loads) had also one of the lowest daily loads of the qnrS gene. However, a similar 
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trend was not observed in Oslo nor Bristol where higher qnrS gene loads were observed despite low 

quinolone usage.   

Keywords: chiral antibiotics; enantioselective analysis; wastewater-based epidemiology; antibiotic 

resistance; (fluoro)quinolones; biomarkers 

 

1. Introduction 

Although it is intuitively likely that regions with high rates of antibiotic prescription should also be 

those characterised by high levels of antibiotics and antimicrobial resistance (AMR) in the 

environment, evidence for such putative correlations has so far proved elusive. Data on antibiotic 

usage in both hospitals and communities are available from the European Surveillance of 

Antimicrobial Consumption Network (ESAC-Net), and data on AMR are provided by the European 

Antimicrobial Resistance Surveillance Network (EARS-Net). These surveillance networks, which 

provide critical data for informing effective AMR management strategies and policies, rely on 

national sales, reimbursement data and information taken from national drug registers. 

Unfortunately, a delay of one or two years is likely before epidemiological data are published, 

which limits the usefulness of the data to address challenges in real-time. Wastewater-based 

epidemiology (WBE) could provide a viable option enabling real time estimation of antibiotics 

consumption, as well as verification of spatial and temporal trends in antibiotics use (and also direct 

disposal).  

WBE relies on the detection and quantification of indicators, so-called biomarkers, which profile 

real usage of a substance through characteristic human urinary excretion patterns. Examples of this 

approach are well documented in the spatial and temporal community-wide monitoring for  illicit 

drugs use (Castrignanò, Yang et al. , Thomas, Bijlsma et al. 2012, Ort, van Nuijs et al. 2014, 

Castrignanò, Lubben et al. 2016, Castrignanò, Mardal et al. 2017), new psychoactive substances 

(Reid, Derry et al. 2013, Bade, Bijlsma et al. 2017) alcohol, tobacco and caffeine use (Castiglioni, 

Senta et al. 2014, Baz-Lomba, Salvatore et al. 2016, Gracia-Lor, Rousis et al. 2017), counterfeit 

medicine use (Causanilles, Cantillano et al. 2018), exposure to pesticides (Rousis, Gracia-Lor et al. 

2017) and endocrine disruptors (Lopardo, Petrie et al. 2019) and general public health (Ryu, Gracia-

Lor et al. 2016). The selection of potential biomarkers is based on a full understanding of human 

pharmacokinetics along with biomarker stability in the environmental matrix. This also includes 

stereoselective metabolism and/or stereoselective enrichment or depletion of the enantiomeric 

composition of the chiral drug and/or transformation products that can occur respectively in humans 

and in the environment. Furthermore, chirality is an important phenomenon utilised in WBE to: (i) 

distinguish between the use and the misuse of drugs, due to different enantiomeric signature of 

prescription medication and illicit usage , as well as (ii) verify the origin of a drug residue through 

the distinction between consumption and direct disposal of unused drugs due to stereoselective 

metabolism of most drugs in humans (Kasprzyk-Hordern and Baker 2012, Emke, Evans et al. 

2014). 

This study focusses on (fluoro)quinolones as they are classified, due to their importance in human 

medicine, to be the “highest priority critically important antimicrobials” by the World Health 

Organization (WHO) (http://www.who.int/foodsafety/cia/en/ 2017). A number of studies have 

addressed the presence of antibiotics or antibiotic resistance genes (ARGs) in the environment 

within the context of risk to the environmental and human health (Kümmerer 2009) (Pruden, Pei et 

al. 2006, Zhang, Zhang et al. 2009), but only a few reports correlated antibiotic loads to the 

presence of ARGs (Rodriguez-Mozaz, Chamorro et al. 2015). There is only a single study that 

addressed antibiotic profiling in the context of  both metabolic profile and stereochemistry 

(Castrignano, Kannan et al. 2018). There are therefore two key knowledge gaps: (1) understanding 

the occurrence of antibiotics in the environment and their impacts on AMR and (2) possibility of 

using WBE approaches to estimate usage of antibiotics. Indeed, wastewater fingerprinting for 
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biomarkers of quinolones use could transform surveillance and management approaches leading to 

a reduction of quinolones usage in the monitored areas and ultimately protecting public health.  

Therefore, the aim of this study is to: 

(i) assess daily loads of selected antibiotics in wastewaters from several European locations, 

(ii) undertake enantiomeric profiling of chiral antibiotics with an aim to compare potency of 

ABs (antibiotics) used across Europe and to verify the origin of ABs through the 

distinction between consumption and direct disposal of unused drugs, 

(iii) measure the level of quinolones resistance gene qnrS in wastewater, 

(iv) compare quinolones and gene resistance loads in the monitored areas to test the hypothesis 

that higher quinolone usage can be linked with higher ARG (antibiotic resistance gene) 

prevalence. 

2. Experimental 

2.1. Chemicals and materials 

Table 1 shows the selection of the analytes considered in this study with information on their 

chemical structure, chirality, marketing, use, metabolic and excretion patterns, stereoselective 

metabolism. Table S1 shows CAS number, molecular formula, molecular weight, log P, pKa values 

and supplier information for all targeted analytes. High purity grade standard solutions of achiral 

analytes were as follows: ciprofloxacin, desethylene-ciprofloxacin, norfloxacin and nalidixic acid. 

The following analytes were used as racemates: (±)-ofloxacin, (±)-ofloxacin-N-oxide, (±)-

desmethyl-ofloxacin, (±)-lomefloxacin, (±)-prulifloxacin, (±)-ulifloxacin, (±)-flumequine, (±)-

nadifloxacin. Stereoisomerically pure standard solutions used were: S-(-)-ofloxacin, also known as 

levofloxacin, R,R-(+)-moxifloxacin, S,S-(-)-moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate with 

two defined stereocentres and R-(+)-besifloxacin. The following deuterated and isotopic analogues 

of target analytes were used as isotopically-labelled internal standards (ILIS): ciprofloxacin-D8, (±)-

ofloxacin-D3, (±)-desmethyl-ofloxacin-D8 and (±)-flumequine13C3. Standard stock solutions were 

prepared at 1 mg mL-1 concentration in acetonitrile for (±)-prulifloxacin, (±)-ulifloxacin, (±)-

ofloxacin-D3 and (±)-flumequine13C3, in water for (±)-lomefloxacin, desethylene-ciprofloxacin, 

ciprofloxacin-D8 and (±)-desmethyl-ofloxacin-D8 and in methanol for the remaining analytes. The 

elution order of (±)-ofloxacin and (±)-moxifloxacin was determined previously (Castrignano, 

Kannan et al. 2018). Stock and working solutions of standards were stored at -20° C. A mixture of 

ILIS was finally prepared from stock solutions at 1 mg L-1 by dilution with mobile phase and it was 

used for spiking the samples. HPLC-grade methanol (MeOH), acetonitrile (ACN), ammonium 

formate and formic acid (≥96%) were purchased from Sigma Aldrich (UK). Ultrapure water was 

obtained from a MilliQ system, UK. All glassware was deactivated in order to prevent the 

adsorption of polar compounds to the hydroxyl sites on the glass surface as described in 

(Castrignanò, Lubben et al. 2016). 

2.2. Wastewater sample collection and storage 

24-h composite raw wastewater samples were collected over a week in March 2015 from several 

wastewater treatment plants across Europe. The sampling protocol used in this study is described 

elsewhere (Castiglioni, Thomas et al. 2014). Sampling locations were in Norway (Oslo), United 

Kingdom (Bristol), Denmark (Copenhagen), The Netherlands (Utrecht), Switzerland (Zurich), Italy 

(Milan) and Spain (Castellón) (Figure S1). Information on population and wastewater flow for cities 

involved in the study are provided in Table S2. Once collected, wastewater samples were 

transported to the local laboratory in refrigerated conditions and shipped on ice blocks to the UK 

within 24 hours. Spiking of ILIS mixture took place on the arrival of these samples (within 24 

hours). 

2.3.  Sample preparation and analysis 

2.3.1. Quantification of antibiotics using chiral liquid chromatography coupled with 

tandem mass spectrometry (chiral HPLC-MS/MS) 
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Once in the laboratory, 50 mL of wastewater samples were spiked with 50 µL of ILIS mixture at 

concentration of 1 mg L-1 and filtered through GF/F 0.7 µm glass fibre filter (Whatman, UK). 

Filtrates were then solid-phase extracted by using Oasis HLB cartridges (60 mg, Waters, UK). 

Before the loading of the samples, these cartridges were conditioned with 3 mL of MeOH and 

equilibrated with 3 mL of ultrapure water. After the loading phase, a washing step was carried out 

with 1 mL of ultrapure water, and the analytes were eluted with 4 mL of MeOH into 5 mL silanised 

glass tubes. The extracts in the glass tubes were then evaporated to dryness under nitrogen flow (5-

10 psi) by using a TurboVap evaporator (Caliper, UK). Reconstitution of the extracts was 

performed by adding 500 μL of the mobile phase, consisting of 10 mM ammonium formate/ MeOH 

1:99 v/v with 0.05% formic acid. Before being transferred to polypropylene plastic vials with 

bonded pre-slit PTFE/Silicone septa (Waters, UK), samples were filtered through 0.2 µm PTFE 

filters (Whatman, Puradisc, 13mm). 20 µL were directly injected into a chiral HPLC-MS/MS. 

Samples were prepared and analysed in duplicate. 

The analysis was undertaken by using a Waters ACQUITY UPLC® system (Waters, Manchester, 

UK) with a chiral CHIRALCEL® OZ-RH column (5 μm particle size, L × I.D. 15 cm × 2.1 mm, 

Chiral Technologies, France) connected with a 2.0 mm × 2.0 mm guard filter (Chiral Technologies, 

France) in the column compartment (temperature set at 30°C). The autosampler was kept at 4°C. 

The flow rate was 0.1 mL min-1 under isocratic conditions. A triple quadrupole mass spectrometer 

(Xevo TQD, Waters, Manchester, UK) equipped with an ESI was used in positive mode. Data were 

acquired in MRM mode. Selected MRM transitions, cone voltage (CV) and collision energy (CE) 

values for each compound were used in accordance with (Castrignano, Kannan et al. 2018) (Table 

S3). MassLynx 4.1 (Waters, UK) was used to control both systems, the Waters ACQUITY and the 

Xevo TQD. TargetLynx software (Waters, Manchester, UK) was used for data processing. 

2.3.2. Quantification of qnrS gene  

Wastewater samples were firstly tested on non-selective media plates for proving the suitable 

volume to be used in a further qualitative test. The test “dry run on non-selective media” was 

performed by using 100 μL and 200 μL of refrigerated wastewater samples (day 6th and 7th) and 

plates were then incubated at 37° C overnight (Figure S2). As plates with 100 μL of wastewater 

incubated provided a distinct bacteria growth, 100 μL of wastewater samples were therefore 

incubated in cysteine-, lactose- and electrolyte-deficient (CLED) agar plates. CLED agar (Sigma 

Aldrich, UK) media was prepared in accordance with manufacturer’s instructions. ~16 colonies 

from each plate were isolated and incubated singularly (an example is shown in Figure S3). Every 

single colony was stocked in cryogenic vials (2mL, Fisherbrand) containing 500 μL of 30% 

LB/glycerol filter-sterilised and kept in the freezer -80°C as reference. The plates of the incubated 

wastewater were kept refrigerated (Figures S4-S5). 

2.3.2.1 DNA extraction 

Triplicate wastewater samples of 1mL each were centrifuged for 5 minutes at 3000 g and the cell 

pellet was resuspended in 200 μL PBS. 5 μL lysozyme were then added, followed by an incubation 

of 15’ at 37 °C. 200 μL binding buffer and 40 μL proteinase K were added and left in incubation for 

10’ at 70 °C. DNA extraction was performed in accordance with manufacturer’s instructions (High 

Pure PCR Template Preparation Kit, Roche, Germany). DNA concentrations were determined by 

QubitTM fluorometer (InvitrogenTM). Measurements of the DNA in the samples were undertaken in 

parallel with known standard solutions. 

2.3.2.2 Target quantification using dPCR 

Digital PCR analysis was performed on the QuantStudio® 3D Digital PCR System (Life 

Technologies, Thermo Fisher Scientific). The digital PCR reaction mixture consisted of 

QuantStudio® 3D Digital PCR Master Mix, 20X SYBR® Green I dye in TE buffer at pH 8, each 

primer and DNA sample. The mixture was loaded in a high-density nanofluidic chip to partition the 
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sample in many independent reactions and sealed. The thermal cycling program was the same 

reported for qPCR analysis in section 2.3.2.1. AnalysisSuiteTM software was used to get 

quantification of the targeted gene and statistical analysis of the results.  

The program was run using thermal cycling conditions. Temperature was first ramped to 95 ᵒC and 

held for 10 min. It was then lowered to 60 ᵒC for 2 min before increasing to 98 ᵒC for 30 seconds. 

This cycle between 60 ᵒC and 98 ᵒC was repeated 40 times to allow for efficient gene amplification. 

The system was then lowered being to 60 ᵒC and held for 2 min, before cooling to room 

temperature. After cooling, each chip was processed using the QuantStudio 3D Digital PCR system. 

AnalysisSuiteTM software was used to get quantification of the targeted gene and statistical analysis 

of the results. 

2.3.2.3. Target quantification with qPCR 

The quantification of qnrS gene was also performed through real-time quantitative PCR (qPCR) 

system (StepOnePlus, Applied Biosystems, UK). The following primers (Eurofins Genomics, 

Germany) were used for specific amplification of qnrS gene (Eurofins Genomics, Germany): 

qnrSrtF11 (GACGTGCTAACTTGCGTGAT) and qnrSrtR11 (TGGCATTGTTGGAAACTTG) (in 

brackets the sequence 5’> 3’ is reported). 

The PCR conditions were programmed with an initial denaturation at 95 °C for 10’, followed by 40 

cycles at the same temperature for 15 seconds and an annealing temperature of 60 °C for a minute. 

A melt curve was successively performed starting from 65 °C to end up to 95 °C. qPCR reaction 

was performed in duplicate in a 25 μL volume mixture and conducted in 96 well plates containing 

12.5 μL of SYBR Green Master Mix (Applied Biosystems, UK), 0.1 μM of each primer and 5 μL of 

template DNA. Amplicon cloning was performed by insertion of the PCR product into a plasmid 

pCR™ 2.1-TOPO® TA vector (InvitrogenTM, UK) in the cloning reaction. The following equation 

(Eq.1) was used for calculating the copy number μL-1 as described elsewhere (Rodriguez-Mozaz, 

Chamorro et al. 2015): 

660 length   Plasmid

number sAvogadro' ion concentratDNA  Plasmid

L

numberCopy 




=


  (Eq.1) 

where Plasmid DNA concentration is expressed in g μL-1 and Plasmid length in bp. 660 is the 

average molecular weight of 1 bp (Perini, Casabianca et al. 2011). By ten-fold dilutions of the 

positive sample, a standard curve was created in order to quantify absolute concentration in 

European wastewater samples. 

Results from qPCR analysis were expressed as Ct (threshold cycle) values, which are relative 

measurements of the concentration of the target gene. By using the equation from the standard 

curve, they were then expressed as qnrS copies μL-1. 

2.4. Calculations 

Daily mass loads of fluoroquinolones were calculated by multiplying the concentrations of the 

analytes expressed in ng L-1 by the flow rate (L day-1) and then normalised by the population size of 

the catchment area (number of people contributing to wastewater analysed). Daily loads of qnrS 

genes were calculated by multiplying the concentrations of the gene expressed in copies L-1 by the 

flow rate (L day-1) and then normalised by the population size of the catchment area. 

2.5. Stability study 

A stability study was performed by using freshly collected wastewater in dark biotic conditions to 

verify if the analytes were suitable as WBE biomarkers. Autoclaved duplicate reactors were spiked 

with a working solution of antibiotics at 1 µg L-1 and incubated with wastewater at room 

temperature and at 4 °C, respectively. The latter temperature set up was used to prove that analytes 
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were stable in refrigerated conditions (i.e. transport). Other two reactors were used as blank for both 

settings. Temperature and pH were constantly monitored at every sampling time. 50 mL were 

collected in duplicate from all reactors at fixed time point (0, 6, 12 and 24 hours) and spiked with an 

ILIS mixture after sampling before filtration. Samples were prepared as described in Section 2.3.1 

and analysed in duplicate by chiral HPLC-MS/MS.  

3. Results and Discussion 

3.1. European wastewater profiling for fluoroquinolones and their metabolic 

consumption markers 

Several sampling sites across Europe were selected in this study: Oslo, Norway; Bristol, United 

Kingdom; Copenhagen, Denmark; Utrecht, The Netherlands; Zurich, Switzerland; Milan, Italy and 

Castellón, Spain (Figure S1). Weekly average concentrations of fluoroquinolones for each city are 

presented in Table S4. Population-mass loads for the studied antibiotics are shown in Figures 1-2-3. 

Table S4 provides daily population-normalised mass loads and EF (enantiomeric fraction) values 

for chiral antibiotics for every day of the week-monitoring campaign. Results from fluoroquinolone 

stability study of DTRs  (Drug Target Residue) are summarised in Table 2. Stability test showed 

high stability of DTRs. However, further work needs to be undertaken to evaluate stability of 

analytes in sewers. It also needs to be mentioned that DTR stability was tested only for wastewater 

samples collected in the UK. One should appreciate microbial and chemical composition of 

wastewater might change in different locations. Due to the availability of national prescription data 

only for the UK, Italy and Norway, wastewater –based antibiotics usage estimations were compared 

with national statistics only in these three countries (Table 3).  

3.1.1. Ciprofloxacin 

DTRs. Ciprofloxacin and its metabolite desethylene-ciprofloxacin were studied as potential 

biomarkers of ciprofloxacin use. Ciprofloxacin is an achiral synthetic drug. In humans, 40-50% of 

consumed ciprofloxacin is excreted unchanged, 2% as desethylene-ciprofloxacin and 4% as sulpho-

ciprofloxacin (with antibacterial activity 30 times lower than ciprofloxacin, 7% as oxo-

ciprofloxacin  with an activity 10-times lower and traces as formylciprofloxacin  

(http://www.fda.gov/downloads/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/

UCM130802.pdf , Bergan, Thorsteinsson et al. 1989)) (Figure S6). Ciprofloxacin is also a 

metabolite of enrofloxacin, which is a veterinary drug. Metabolism of enrofloxacin leads to 

excretion of 31% as ciprofloxacin, 5% as oxo-ciprofloxacin and 3% as desethylene-ciprofloxacin 

(http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-

_Report/2009/11/WC500014142.pdf). 

Population-normalised daily loads. In this study, population-normalised ciprofloxacin loads 

ranged from a minimum average of 37.6 mg day-1 1000 people-1 in Bristol to a maximum value of 

409.9 mg day-1 1000 people-1 in Castellón. The metabolite loads varied from 9 mg day-1 1000 

people-1 in Milan to a maximum of 23.9 mg day-1 1000 people-1 in Oslo. The highest intra-week 

variability was found for ciprofloxacin in Zurich, followed by Castellón and Milan, and for 

desethylene-ciprofloxacin in Oslo and Milan. As expected, most of the countries showed stable 

mass loads over the sampling week (Figure 1, Table S4). It is important to mention that because of 

ciprofloxacin’s therapeutic use, intra-day and seasonal, and not weekly, variations are usually 

observed (Coutu, Wyrsch et al. 2013). This seasonal trend is most likely to occur in central and 

Southern European countries, rather than in Northern countries, where a drop in use during summer 

is observed because of the effect of temperature. The ratio between parent compound:metabolite 

ranged between 3:1 and 8:1 for Northern European cities and around 20:1 for Southern cities. 

According to metabolism data, the ratio indicating human consumption is nearly 22.5:1, thus the 

loads of ciprofloxacin from Southern cities are expected to be mainly related to consumption. 

Drug prescription. In 2015, according to the available official national statistics on drug 

prescriptions, 5,782 kg of ciprofloxacin were prescribed in England (data elaborated from 
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Prescription Cost Analysis (PCA) available at 

(http://www.nhsbsa.nhs.uk/PrescriptionServices/3494.aspx)), 816 kg in Norway (of which 80.5 kg 

were from Oslo) (http://www.norpd.no) and 26,674 kg in Italy (http://www.agenziafarmaco.gov.it). 

The excreted quantities of ciprofloxacin and its metabolite were as follows: 2,602 kg of 

ciprofloxacin and 116 kg of desethylene-ciprofloxacin in England, 367 kg and 16 kg respectively in 

Norway (36 kg and 2 kg in Oslo) and 12,003 kg and 533 kg in Italy. Considering 45% as the 

average excretion rate for the parent compound and 2% for the metabolite, the average 

ciprofloxacin consumption was estimated at 115 mg day-1 1000 people-1 in England, 113 mg day-1 

1000 people-1 in Norway and 596 mg day-1 1000 people-1 in Italy (Table 3).  

Consumption estimates. The estimates calculated from wastewater analysis were 83.5 and 703.8 

mg day-1 1000 people-1 in England, 369.9 and 1292.7 mg day-1 1000 people-1 in Norway and 772.6 

and 487.0 mg day-1 1000 people-1 in Italy, using ciprofloxacin and desethylene-ciprofloxacin 

respectively as DTR. Therefore, wastewater data was in agreement with the official statistics for 

England and Italy when a tolerance of 30% was applied and when ciprofloxacin was used as DTR. 

Interestingly, wastewater data indicates higher use of ciprofloxacin in Norway than reported. This is 

in agreement with another study conducted in Norway in 2010 where high loads of ciprofloxacin 

denoting 880kg/ year were also reported (Plósz, Leknes et al. 2010). High loads of ciprofloxacin 

could not be explained, however, Plósz et all suggested that this might be due to transformation of 

another fluoroquinolone (e.g. enrofloxacin) (Plósz, Leknes et al. 2010). Desethylene-ciprofloxacin 

is only a minor metabolite, however, it is considered appropriate to utilise it in WBE as a biomarker 

of ciprofloxacin, especially if applied in conjunction with its parent compound. As both 

ciprofloxacin and desethylene-ciprofloxacin were found to be stable in wastewater (only <15% 

decrease was observed at 4 ˚C in 24h) (Table 2), desethylene-ciprofloxacin and parent ciprofloxacin 

were chosen as biomarkers of ciprofloxacin use. However, unexpectedly high loads of ciprofloxacin 

in Oslo will require further investigation to fully validate the usage of above DTRs in ciprofloxacin 

studies. Ciprofloxacin profile from other catchment areas in Norway should be further investigated 

as differences in spatial distribution of consumption per capita within the country itself might occur. 

3.1.2. Ofloxacin 

DTRs.  The selection of the ofloxacin biomarkers in WBE was based on the evaluation of (±)-

ofloxacin and its two minor metabolites: (±)-ofloxacin-N-oxide and (±)-desmethyl-ofloxacin (% 

excretion accounts for 2%, while (±)-ofloxacin-glucuronide along with the parent drug itself 

account for 80-85%). Disposition of ofloxacin is stereoselective in humans probably due to 

differences in renal excretion (Okazaki, Kojima et al. 1991). Stereoselective intake of S-(-)-

ofloxacin is linked to the production of S-(-)-metabolites. As in the case of other compounds 

(Castiglioni, Zuccato et al. 2011), glucuronides could be hydrolysed in wastewater, thus resulting in 

the formation of the parent compound. 

Population-normalised daily loads. In the current study, population-normalised ofloxacin loads 

ranged from a minimum average value of 4.3 mg day-1 1000 people-1 in Utrecht to a maximum 

value of 727.4 mg day-1 1000 people-1 in Milan (Figure 2). The same was found for the metabolites, 

but with lower mass loads due to their low urinary excretion. In fact, they ranged between 0.4 and 

7.4 mg day-1 1000 people-1 for ofloxacin-N-oxide and between 1.8 and 11.8 mg day-1 1000 people-1 

for desmethyl-ofloxacin. Intra-week variability of ofloxacin was lower than its metabolites (Table 

S4).  

Previous findings utilising enantiomeric profiling showed that ofloxacin metabolites detected in 

wastewater originated from human metabolism (Castrignanò E. 2018). In this study, a 

predominance of the S-(-)-ofloxacin loads was observed with respect to R-(+)-ofloxacin in northern 

European cities. In particular, it was found that S-(-)-enantiomer was constantly three to four times 

higher than the R- enantiomer throughout the week, respectively in Bristol, in Oslo and in Utrecht.  

Enantiomerically pure S-(-)-ofloxacin was exclusively found in Southern locations, thus indicating 

usage of enantiomerically pure S-(-)-ofloxacin. Furthermore, parent compound:metabolite ratio, 
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namely ofloxacin:ofloxacin-N-oxide ratio, was 10:1 for Northern cities, whilst it was found variable 

for the other studied sites. Ofloxacin was nearly six times higher than desmethyl-ofloxacin in Oslo 

and Bristol, whilst it was three times higher in Copenhagen and Utrecht. According to metabolism 

data, the proposed ratio parent compound:metabolite was 41.2:1 (Table 1). In Castellón and Milan, 

slightly higher ratios were found, thus suggesting also direct disposal of unused ofloxacin in these 

cities (Figure 2). 

Drug prescription and consumption estimates. According to PCA data in 2015 in England 

(http://www.nhsbsa.nhs.uk/PrescriptionServices/3494.aspx), 212 kg of (±)-ofloxacin and 120 kg of 

S-(-)-ofloxacin were prescribed. Considering 82.5% as average excretion percentage for the parent 

compound, the excreted amount was calculated as 87.5 kg as R-(+)-ofloxacin and 186.5 kg as S-(-)-

ofloxacin (this resulted from 87.5 kg excreted from racemic ofloxacin plus 99 kg from enantiopure 

S-(-)-ofloxacin). Therefore, on the basis of the available statistics, its consumption was estimated at 

4 mg day-1 1000 people-1 as R-(+)-ofloxacin and 8 mg day-1 1000 people-1 as S-(-)-ofloxacin (Table 

3). The estimates calculated from wastewater analysis were fully in agreement with the NHS data: 4 

mg day-1 1000 people-1 as R-(+)-ofloxacin and 12 mg day-1 1000 people-1 as S-(-)-ofloxacin. 

Regarding the metabolites, 2 and 4 kg were respectively excreted as R-(+)- and S-(-)-enantiomer. 

When they were used as ofloxacin DTRs, the estimates from ofloxacin-N-oxide were closer to those 

calculated using ofloxacin as a DTR with respect to those from desmethyl-ofloxacin, but not within 

30% of tolerance. In Norway, as a result of prescription of 8.9 and 0.9 kg of ofloxacin as racemate 

and enantiopure S-(-)- form (http://www.norpd.no), respectively, consumption was estimated at 1.2 

mg day-1 1000 people-1 as R-(+)- and 1.4 mg day-1 1000 people-1 as S-(-)-ofloxacin. However, 

estimates from wastewater analysis were higher from those calculated from official sources for all 

considered DTRs. In Italy, prescription data showed that 42234 kg were prescribed as only S-(-)-

ofloxacin. Therefore, the excreted amounts of S-(-)-ofloxacin and its S-configured metabolites were 

estimated to be 34843 kg as parent compound and 845 kg as metabolites. In this case, even if there 

was an underestimation between estimates from wastewater analysis and those from the official 

source, data were in agreement in relation to the enantiopure form consumed. In terms of stability, 

all chosen DTRs were stable after 24 h at 4 ˚C (Table 2) with only S-configured ofloxacin and 

ofloxacin-N-oxide being close to 20% of decrease. As in the case of desethylene-ciprofloxacin, 

ofloxacin-N-oxide and desmethyl-ofloxacin, as well as the parent compound proved to be useful 

DTRs in estimating ofloxacin usage with WBE.  

3.1.3. Norfloxacin 

DTRs. Norfloxacin is an achiral synthetic fluoroquinolone. 25 to 40% of administered norfloxacin 

is excreted unchanged in urine (30% as average in faeces within 48 hours) and 5-10% as 

metabolites within 24-48 hours (http://toxnet.nlm.nih.gov). 

Population-normalised daily loads. In wastewater, population-normalised loads were up to 40.2 

mg day-1 1000 people-1 in Zurich. As in the case of ciprofloxacin and ofloxacin, intra-day variation 

was observed for norfloxacin by Coutu et al. (2013) with a peak load in wastewater at the first flush 

in early morning (Coutu, Wyrsch et al. 2013). 

Drug prescription. Prescription data showed that only 1.1 kg was dispensed in England in 2015. 

Considering excretion from urine and faeces, the excreted amount calculated was 0.7 kg. Hence, its 

consumption was estimated at 0.03 mg day-1 1000 people-1 (Table 3).  

Consumption estimates. Estimates from wastewater analysis were 1.3 mg day-1 1000 people-1 

showing a slight disagreement between the two datasets in England. In Norway and Italy data on 

norfloxacin from wastewater analysis confirmed that it was used even though there was no 

confirmation from prescription data (Figure 3). To sum up, norfloxacin can be used as a biomarker 

indicating its usage in WBE as it is stable after 24 h at 4˚C (Table 2). 

3.1.4. Nalidixic acid 
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DTRs. Nalidixic acid is an achiral synthetic quinolone. In humans, only ~2-3% of nalidixic acid is 

excreted unchanged, 80% is metabolised to an active metabolite 7-hydroxy-nalidixic acid, carboxy 

metabolite and the inactive conjugates (7-hydroxy-nalidixic acid and nalidixic acid glucuronides) 

(Moffat, Osselton et al. 2004). 

Population-normalised daily loads. In this study, population-normalised loads were up to a 

maximum value of 2.5 mg day-1 1000 people-1 in Oslo (Figure 3). The possible hydrolysis of the 

glucuronides and, thus, the release of free-nalidixic acid can contribute to loads found in 

wastewater. As the excretion percentage of these glucuronides is not available, it was assumed that 

the excretion of glucuronide conjugates of 7-hydroxynalidixic acid and glucuronide conjugates of 

nalidixic acid were 1:1, therefore estimates were performed considering a total contribution of 40% 

of the parent compound.  

Consumption estimates. Estimates from wastewater analysis were 1.0, 6.3 and 1.5 mg day-1 1000 

people-1 in England, Norway and Italy using nalidixic acid as DTR (Table 3). However, prescription 

data from these countries showed that this drug was not dispensed. Considering the low values from 

estimates, it is possible to assume that both data-sets were in agreement. Nalidixic acid was 

therefore found to be a good biomarker for its usage also due to its stability in wastewater (Table 2), 

but other DTRs should be still investigated (i.e. 7-hydroxy-nalidixic acid) to be able to differentiate 

between consumption and direct disposal of unused drug. 

3.1.5. Lomefloxacin 

DTRs. (±)-Lomefloxacin is a chiral synthetic fluoroquinolone. Once ingested, 65% is found 

unchanged in the urine and 9% is excreted as glucuronide 

(http://www.druglib.com/activeingredient/lomefloxacin/). Its consumption estimates from 

wastewater analysis considered also the percentage fraction from the glucuronides. Therefore, 

assuming that lomefloxacin glucuronide is hydrolysed in wastewater, 74% excretion was used for 

the calculations. To the authors’ knowledge, information on its stereoselective metabolism is not 

available. Unfortunately, under chromatographic conditions used, its enantiomers were not 

resolved. Therefore, analyses of its loads were intended for (±)-lomefloxacin.  

Population-normalised daily loads. In this study, population-normalised loads ranged from a 

minimum value of 0.1 for Utrecht to a maximum value of 2.6 mg day-1 1000 people-1 for Milan 

(Figure 3). 

Consumption estimates. According to national statistics (±)-lomefloxacin was not dispensed in 

2015 in England, Norway and Italy. However, wastewater-based consumption estimates indicated 

usage at 0.7, 1.8 and 3.5 mg day-1 1000 people-1 in England, Norway and Italy. Therefore, data from 

wastewater analysis can potentially provide more accurate data on depicting the usage of such drug 

than traditional prescription data analysis. As in the case of nalidixic acid, lomefloxacin was found 

to be stable during the stability study (Table 2) and as a result it can be considered as a suitable 

biomarker for WBE purposes. 

3.1.6. Moxifloxacin 

(±)-Moxifloxacin is a synthetic fluoroquinolone that has two chiral centres. It is sold in one 

stereochemical form of S,S-(-)-moxifloxacin. R,R-(+)-moxifloxacin is an impurity of the drug (Cruz 

and Hall 2005), therefore it is unlikely a product of human metabolism. Indeed, S,S-(-)-

moxifloxacin is excreted unchanged ( ~20% in urine and 25% in faeces) and as acyl-glucuronide 

(14% of the dose in urine and moxifloxacin-N-sulphate at 35% of the dose in faeces) (Ahmed, Vo et 

al. 2008, Zhou 2014). In this study, diastereomers of moxifloxacin were separated under selected 

chromatographic conditions. Hence, it was possible to verify whether R,R-moxifloxacin was present 

in the environmental matrix due to possible microbial conversion of the parent drug. S,S-(-)-

moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate were selected as biomarkers of moxifloxacin 

use.  
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Population-normalised loads of moxifloxacin and its metabolite were up to a maximum of 21.6 and 

149.8 mg day-1 1000 people-1 in Castellón with only S,S-(-)-enantiomer present (Figure 3). 

Measured parent compound:metabolite ratios were variable across cities, such as 1:14 for Utrecht, 

1:9 for Zurich, 1:7 for Castellón, 1:6 for Copenhagen and 1:2.5 for Milan. In relation to metabolism 

data (Table 1), the closer ratio was observed for Milan. 

According to PCA (http://www.nhsbsa.nhs.uk/PrescriptionServices/3494.aspx), 39.6 kg of S,S-(-)-

moxifloxacin were dispensed in England in 2015. Therefore, estimates of its consumption were 0.8 

mg day-1 1000 people-1. However, neither the parent compound nor its metabolite was found in 

wastewater samples. Norwegian WBE data were in agreement with national statistics 

(http://www.norpd.no) as S,S-(-)-moxifloxacin was neither prescribed nor detected in wastewater. 

S,S-(-)-Moxifloxacin and the metabolite were found in Italian wastewater samples, leading to 

consumption estimates of S,S-(-)-moxifloxacin of 6.8 and 19.0 mg day-1 1000 people-1, when they 

were both used as biomarkers. Ratio parent:metabolite was 1:2 and this could be ascribed to 

degradation of parent compound by microbes in sewage or biofilms in-sewer transport. This was  

different from what was observed in the case of ciprofloxacin and ofloxacin, where measured ratios 

of the metabolite to parent compound were slightly higher than expected from human metabolism 

for some cities but lower for others, indicating that in-sewer degradation for these compounds might 

be less significant than for moxifloxacin. However, further studies on stability during sewer 

transport are required to support this hypothesis. As prescription data did not show any dispensation 

of such drug, both datasets were in disagreement. Moxifloxacin and its metabolite were found to be 

suitable biomarkers for WBE approach due to high urinary excretion and high stability in 

wastewater (Table 2). 

3.1.7. Prulifloxacin 

(±)-Prulifloxacin is a synthetic prodrug sold as racemate for oral administration. It is converted in 

its active compound, ulifloxacin, by a hepatic enzyme. The chiral centre is not the metabolic site 

and therefore metabolism S-(-)-prulifloxacin is not stereoselective (Yang, Aloysius et al. 2011). 

Only S-(-)-ulifloxacin has bactericidal effects, but the enantiomerically pure S-(-)-form is not 

commercially available yet (YING, Peng et al. 2012). Ulifloxacin is excreted at 17-23% in the urine 

and 17-29% in the faeces.  

In the current study, population-normalised ulifloxacin loads were 22.3 and 1.5 mg day-1 1000 

people-1 in Milan and Castellón respectively (Figure 3). Enrichment of ulifloxacin with first-eluting 

enantiomer was observed in Milan, whilst the opposite was observed in Castellón. (±)-Prulifloxacin 

was expected to be found in wastewater only in the case of direct disposal. Indeed, it was not found 

in any samples. 4,446 kg of prulifloxacin were prescribed in Italy, that accounted for 1912 kg of 

excreted ulifloxacin. Estimates from wastewater analysis (52.1 mg day-1 1000 people-1) were 

slightly higher than those calculated from prescription data (44.1 mg day-1 1000 people-1), 

suggesting an agreement between two datasets. Both compounds were found to be suitable as 

biomarkers for prulifloxacin use. 

3.1.8. Flumequine 

(±)-Flumequine is a racemic drug marketed as a veterinary drug. After enzyme deconjugation, it is 

excreted as unchanged 81-86% in calves’ urine, at 12-17% as 7-hydroxy-flumequine in calves’ 

urine and as glucuronide conjugates (http://www.fao.org/docrep/w8338e/w8338e0a.htm). It 

undergoes stereoselective metabolism in sheep, cattle and poultry (Besse, Guyonnet et al. 1998). 

Population-normalised loads ranged from 0.4 in Copenhagen to 1.2 mg day-1 1000 people-1 in 

Zurich (Figure 3). Enrichment of flumequine with first-eluting enantiomer was detected in all 

samples from the locations investigated. Its presence in wastewater can be associated with its 

excretion as a result of animal metabolism (EF>0.5) or its direct disposal (EF=0.5). In wastewater, 

EF values for flumequine ranged from 0.6 ± 0.0 to 0.9 ± 0.1. In this case, the first option seems to 
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be the most plausible because of the chiral signature in all the samples (EF>0.5). Flumequine was 

found to be stable during the stability study (Table 2). 

3.1.9. Other quinolones 

(±)-Nadifloxacin and R-(+)-besifloxacin are discussed in “S1- Other quinolones”. As both were not 

detected at enantiomeric level in composite wastewater samples, their enantiomeric profiling could 

not be investigated. 

3.2.  European wastewater profiling for qnrS gene and correlation with 

environmental quinolone prevalence 

European wastewater samples were analysed for qnrS gene to test the hypothesis that usage of 

antibiotics might be linked with higher prevalence of antibiotic resistance. QnrS gene was selected 

because of its reduced susceptibility to fluoroquinolones according to Rodriguez-Mozaz et al. 

(Rodriguez-Mozaz, Chamorro et al. 2015) and Marti et al. (Marti, Variatza et al. 2014). Target qnrS 

quantification was performed using dPCR and qPCR as described in Experimental. The results are 

shown in Figure 4, whilst a discussion on qualitative results is provided in “S2- Qualitative test in 

selective media” (Table S5). Interestingly, prevalence of the qnrS gene in terms of the copy number 

per 1L of wastewater was relatively consistent across studied locations. However, when normalised 

to wastewater flows, an interesting pattern appeared indicating higher prevalence of the qnrS gene 

in terms of ‘daily loads’ in Milan when compared to other locations. As qnrS is not specific to any 

quinolone in particular, calculations based on the total concentrations, daily loads and the 

population-normalised loads of all studied (fluoro)quinolones were performed in order to compare 

prevalence of both quinolone and qnrS gene in studied locations (Figure 4). An interesting pattern 

was observed. The highest daily loads of the qnrS gene in Milan corresponded with the highest total 

quinolone load in Milan proving the hypothesis that higher usage of quinolones is linked with 

higher prevalence of quinolone resistance genes. Also, Utrecht with the lowest quinolone usage 

(low daily loads) had also one of the lowest daily loads of the qnrS gene. However, similar trend 

was not observed in Oslo and Bristol. Interestingly, concentrations of quinolones in Castellón’s 

wastewater were observed to be the highest, which could provide a misleading conclusion on high 

risks from exposure but daily loads revealed that the actual daily burden from quinolones in the 

catchment area is low (hence, low qnrS gene load), albeit still high when normalised to the 

population size.   

ECDC/EFSA/EMA first joint report studied the relationship between national consumption of 

fluoroquinolones/quinolones and the risk of reduced susceptibility to ciprofloxacin by using E. coli, 

Salmonella spp., C. coli and C. jejuni as indicators 

(http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/4006.pdf). 

According to that, the impact on the contribution of quinolone consumption could be explained as 

follows:  

(i) cross-resistance between quinolones and fluoroquinolones are similarly detected by the use 

of epidemiological cut-off values for ciprofloxacin resistance; 

(ii) ciprofloxacin resistance in E. coli is leaded by the selection of quinolones for the first 

mutation step; 

(iii)the dissemination of plasmid-mediated resistance to quinolones mediated by qnr genes in 

Salmonella spp. can provide opportunities for co-selection of unrelated antimicrobials. 

On the other hand, it was also reported that differences in the occurrence of ciprofloxacin resistance 

were observed in countries with similar low level of ciprofloxacin consumption from ciprofloxacin 

resistance in C. coli data. The reasons were ascribed to differences in the fluoroquinolone 

consumption in years previous to this study and in bacteria resistance spreading among countries 

(http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/4006.pdf). 

For these reasons, the fact that qnrS gene was not so high in terms of copy number in the analysed 

samples from Italy and Spain with respect to other Northern European cities could be difficult to 
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explain. In this study the correlation between occurrence of antibiotics and occurrence of their 

resistance gene was found, but the results should be interpreted with caution, due to limited dataset 

regarding ARG analysis. This is in partial agreement with Rodriguez-Mozaz et al. (2015) 

(Rodriguez-Mozaz, Chamorro et al. 2015), where a significant correlation was proved at local level. 

A multi-variable approach, that considers the contribution of co-selecting factors, such as biocides 

and heavy metals, along the resistance genes levels, could enable a systematic investigation on such 

correlations and determine the role played from these factors in the AMR context.   

4. Conclusions 

Wastewater-based epidemiology (WBE) was applied for the first time in seven cities across Europe 

with the aim of estimating quinolone consumption via the analysis of human urinary metabolites 

combined with prevalence of qnrS (quinolone resistance) gene in wastewater. The main conclusions 

are as follows: 

1.  WBE was proven to be a powerful tool that enabled estimation of (fluoro)quinolone 

antibiotic consumption/usage over a week-long study across seven European locations. 

Notably, the occurrence of quinolones in wastewater reflected the spatial trend from 

estimated quinolones consumption reported by ECDC in 2015 (Table S6). 

2. The most comprehensive panel of quinolone biomarkers was considered and the following 

biomarkers were found to be suitable for WBE applications: ciprofloxacin and desethylene-

ciprofloxacin, (±)-ofloxacin with its main metabolites (±)-ofloxacin-N-oxide and (±)-

desmethyl-ofloxacin, norfloxacin, nalidixic acid, lomefloxacin, moxifloxacin and its 

metabolite N-sulphate, the precursor (±)-prulifloxacin with its active compound (±)-

ulifloxacin, (±)-flumequine.  

3. The assessment of the parent:metabolite ratio lead to the conclusion that unused ofloxacin is 

likely directly disposed of through the sewer network in the Southern European cities due to 

higher parent:metabolite ratio with respect to the estimated metabolism ratio.  

4. Enantiomeric profiling of quinolone markers enabled the patterns of drug use to be 

understood and spatial drug use estimated in near-real time. The exclusive stereoselective 

use of S-(-)-ofloxacin was observed in Southern cities, whilst racemic ofloxacin was more 

predominant in Northern European cities (due to differences in prescriptions of the drug 

itself). The consumption of moxifloxacin was demonstrated by the presence of S,S-(-)-

configured moxifloxacin and S,S-(-)-moxifloxacin-N-sulphate. Enantiomeric profiling of 

prulifloxacin showed that only its metabolite, ulifloxacin, was found in Milan and Castellón. 

Therefore, the presence of ulifloxacin was related to prulifloxacin metabolism and the direct 

disposal of unused prulifloxacin did not occur in any of the locations monitored. Despite 

flumequine metabolites not being included in the study, the enrichment of its first-eluting 

enantiomer in all the samples was attributed to animals’ metabolism rather than its direct 

disposal.  

5. European wastewater samples were analysed for qnrS gene to test the hypothesis that usage 

of antibiotics is linked with higher prevalence of antibiotic resistance. The highest daily 

loads of the qnrS gene in Milan corresponded with the highest total quinolone load in Milan 

proving the hypothesis that higher usage of quinolones is linked with higher prevalence of 

quinolone resistance genes. Also, Utrecht with the lowest quinolone usage (low daily loads) 

had also one of the lowest daily loads of the qnrS gene. However, similar trend was not 

observed in Oslo and Bristol. Interestingly, concentrations of quinolones in Castellón’s 

wastewater were observed to be the highest, which could provide a misleading conclusion 

on high risks from AMR but daily loads revealed that the actual daily burden from 

quinolones in the catchment area is low (hence, low qnrS gene load), albeit still high when 

normalised to the population size.   
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Table 1 Selected chiral drug biomarkers (in italics) and their pharmacokinetic data 

Drug Structure Chirality Marketing Use Metabolite Excretion Reference 
Ciprofloxacin 

 

No Synthetic Human Parent compound 40-50% [1], [2] 

Desethylene-ciprofloxacin 2%  

Sulfo-ciprofloxacin 4%  

Oxo-ciprofloxacin   

(±)-Ofloxacin 

 

Yes, 1*C Synthetic Human Parent compound In urine over 24-48 h and 

between 4-8% excreted in 

faeces 

[3], [4] 

Desmethyl-ofloxacin Small amount of the dose  

Ofloxacin-N-oxide Small amount of the dose  

Stereoselective metabolism [5], [6], [7] 

S-(-)-Ofloxacin (L-

Ofloxacin) 

 

Yes, 1*C Synthetic Human Parent compound In urine (80% to 85%) and in 

faeces (2%) within 24 h 

[3] 

Desmethyl-levofloxacin 2% of the dose  

Levofloxacine-N-oxide 2% of the dose  

Norfloxacin 

 

No Synthetic Human Parent compound 25-40% of the dose is excreted 

in urine, 30% (range: 10-50%) 

is excreted in feces within 48 

hours 

[8] 

Metabolites 5-10% as metabolites within 

24-48 hours 

 

Nalidixic acid 

 

No Synthetic ? Parent compound 2-3% in the urine [3] 

7-hydroxynalidixic acid 

(active) 

About 80% of a dose is 

excreted in the urine in 8h, 

mainly as glucuronide 

conjugates 

 

Glucuronide conjugates of 

7-hydroxynalidixic acid 

(inactive) 

 

Glucuronide conjugates of 

nalidixic acid (inactive) 
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7-carboxy metabolite 

(inactive) 

 

(±)-Lomefloxacin 

 

Yes, 1*C Synthetic Human Parent compound 65% in urine [9], [10] 

Glucuronide 9%  

No info on stereoselective 

metabolism (to author’s 

knowledge) 

(±)-Moxifloxacin 

 

Yes, 2*C Synthetic, 

sold in one 

form S,S-(-

)-

moxifloxaci

n (shown on 

the left), its 

impurity is 

R,Ra 

 

Human Parent compound ~20% in urine and ~25% in 

feces. 

[1], [11], 

[12] 

Moxifloxacin acyl 

glucuronide 

14% of the dose in urine  

Moxifloxacin-N-sulphate 35% of the dose in faeces  

No info on stereoselective 

metabolism (to author’s 

knowledge) 

(±)-Prulifloxacin 

 

Yes, 1 *C Synthetic 

prodrug, 

sold as 

racemate 

Human Ulifloxacin 17-23% in the urine and 17-

29% in the faeces 

[13] 

Inactive metabolites 7%  

No stereoselective metabolism [14] 

(±)-Flumequine 

 

Yes, 1*C Racemic Veterinary 

[15] 

Parent compound 81-86% in calves urine (after 

enzyme deconjugation) 

[16] 

7-hydroxy-flumequine 12-17% in calves urine (after 

enzyme deconjugation) 

 

Glucuronides of 

flumequine 

  

Stereoselective metabolism in 

sheep, cattle and poultry 

[17] 

(±)-Nadifloxacin Yes, 1*C Synthetic Human Parent compound 0.09% of the administered dose 

was excreted in the urine over 

48 hours, <5% eliminated in the 

urine, 20% as conjugates 

[18], [19] 

Sulphates  

Glucuronides No info on stereoselective 

metabolism (to author’s 

knowledge) 
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R-(+)-Besifloxacin 

 

Yes, 1*C Synthetic, 

sold in one 

form only 

Human Parent compound 73% in animal feces, and 23% 

in animal urine. 

No appreciable metabolism 

[1], [20] 

No info on stereoselective 

metabolism (to author’s 

knowledge) 

a http://www.rxlist.com
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Table 2 Stability of targeted compounds in influent wastewater samples stored over a 24h. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Expressed as difference in percentage from time-point 0 ± SD 

Analyte Stabilitya [%] 

Raw (unfiltered) wastewater, pH 7.4, 

stored at 17 ◦C 

Raw (unfiltered) wastewater, pH 7.4, 

stored at 4 ◦C 

6 h 12 h 24 h 6 h 12 h 24 h 

Ciprofloxacin -30.6 ± 1.6 -41.1 ± 9.4 -39.2 ± 10.5 26.9 ± 3.0 -5.5 ± 0.5 -13.4 ± 2.7 

Desethylene-ciprofloxacin -8.6 ± 0.3 -15.1 ± 6.7 -35.6 ± 1.5 10.0 ± 12.2 -4.9 ± 12.3 6.2 ± 11.1 

S-(-)-Ofloxacin (L-Ofloxacin) -5.5 ± 5.0 12.7 ± 4.2 -42.8 ± 4.2 11.5 ± 12.3 8.7 ± 2.4 -19.4 ± 0.6 

R-(+)-Ofloxacin 23.1 ± 13.6 45.1 ± 3.4 -34.6 ± 3.4 23.2 ± 0.7 17.1 ± 10.1 -1.3 ± 4.1 

Norfloxacin -22.8 ± 2.0 -32.0 ± 17.3 -24.5 ± 7.8 4.6 ± 1.0 -24.3 ± 5.5 -16.6 ± 8.6 

S-(-)-Ofloxacin-N-oxide -43.9 ± 15.3 -91.4 ± 3.1 -98.3 ± 0.7 10.7 ± 1.6 -44.4 ± 4.7 -19.0 ± 12.2 

R-(+)-Ofloxacin-N-oxide -22.5 ± 3.2 -90.4 ± 4.3 -97.6 ± 0.6 16.7 ± 12.6 -30.2 ± 9.1 -9.1 ± 10.7 

S-(-)-Desmethyl-ofloxacin 0.4 ± 4.9 7.4 ± 1.7 -15.5 ± 18.6 15.1 ± 14.1 10.9 ± 7.0 -1.5 ± 18.6 

R-(+)-Desmethyl-ofloxacin 7.3 ± 9.8 11.8 ± 15.4 -4.1 ± 19.1 27.7 ± 2.1 11.7 ± 13.3 10.9 ± 15.4 

Nalidixic acid -15.8 ± 4.6 -30.4 ± 9.8 -42.2 ± 8.0 7.8 ± 16.1 -13.5 ± 13.9 8.3 ± 7.3 

Lomefloxacin 1.4 ± 7.8 -19.0 ± 9.9 -33.2 ± 12.7 12.8 ± 13.8 5.3 ± 0.8 7.8 ± 2.8 

R,R-Moxifloxacin -2.1 ± 3.2 -5.3 ± 19.2 -11.9 ± 6.7 4.4 ± 1.6 -1.9 ± 9.2 -5.7 ± 12.1 

S,S- Moxifloxacin 10.0 ± 19.1 2.8 ± 15.6 -9.9 ± 3.3 30.2 ± 8.6 5.2 ± 4.0 5.0 ± 13.4 

Moxifloxacin-N-sulphate 0.4 ± 0.3 1.0 ± 9.4 -41.0 ± 10.1 11.7 ± 0.6 13.9 ± 2.7 5.6 ± 7.7 

Prulifloxacin-E1 9.0 ± 6.1 13.5 ± 13.4 -5.4 ± 6.5 26.4 ± 9.0 -2.1 ± 5.5 10.1 ± 18.7 

Prulifloxacin-E2 10.0 ± 5.5 19.8 ± 11.7 6.6 ± 4.3 21.8 ± 3.8 3.7 ± 4.7 -9.7 ± 10.2 

Ulifloxacin-E1 2.0 ± 0.3 6.3 ± 15.8 -13.1 ± 8.0 -2.9 ± 19.7 6.3 ± 9.0 -9.8 ± 10.4 

Ulifloxacin-E2 52.0 ± 0.7 61.4 ± 9.1 55.1 ± 4.4 -5.0 ± 2.7 40.9 ± 12.8 6.5 ± 9.1 

Flumequine-E1 -1.2 ± 10.0 -6.4 ± 3.9 -21.6 ± 2.5 1.5 ± 0.0 -4.0 ± 7.7 -8.3 ± 10.1 

Flumequine-E2 0.5 ± 16.1 -1.1 ± 0.6 -18.6 ± 2.9 0.1 ± 8.1 -7.2 ± 5.9 -8.6 ± 15.8 

Nadifloxacin-E1 -5.5 ± 10.3 -13.6 ± 6.7 -37.1 ± 2.0 24.4 ± 5.1 -2.0 ± 12.9 -14.2 ± 13.9 

Nadifloxacin-E2 -5.0 ± 16.4 -6.3 ± 5.0 -31.8 ± 3.0 26.5 ± 8.2 -1.1 ± 8.1 -10.2 ± 15.3 

R-(+)-Besifloxacin -21.0 ± 9.9 -47.8 ± 8.1 -81.3 ± 6.4 1.0 ± 12.8 -20.5 ± 7.5 -9.2 ± 5.2 
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Table 3 Consumption estimates were calculated considering prescriptions data and wastewater (WW) analysis. 
Pharmaceuticals Total consumption (kg/year)  DTR Correc

tion 

Factor  

Consumption estimates (mg day-1 1000 people-1) 

Norwaya Englandb Italyc Norway England Italy 

Prescription 

data (2015) a 

WW analysis 

(2015) 

NHS data 

(2015) b 

WW analysis 

(2015) 

Prescription 

data (2015)c 

WW 

analysis 

(2015) 

Ciprofloxacin 

  

816.3 (as 

J01MA02), 

0.0 (as 

S01AE03 

and 

S02AA15) 

5782.0 26674.0 Ciprofloxacin 2.22 113.0 369.9 115.0 83.5 596.0 772.6 

Desethylene-

ciprofloxacin 

54.2 1292.7 703.8 487.0 

Ofloxacin 8.9 (as 

J01MA01) 

212 as 

(±)-

ofloxacin

, 120 as 

S-(-)-

ofloxacin 

42234 as 

S-(-)-

ofloxacin 

Ofloxacin 1.21 1.2 as R-(+)-

ofloxacin, 1.4 as 

S-(-)-ofloxacin 

4 as R-(+)-

ofloxacin and 

21 as S-(-)-

ofloxacin 

4 as R-(+)-

ofloxacin, 

8 as S-(-)-

ofloxacin 

4 as R-(+)-

ofloxacin and 

12 as S-(-)-

ofloxacin 

1729 as S-(-)-

ofloxacin 

880.1 as S-(-

)-ofloxacin 

0.9 (as 

J01MA12-

Levofloxac

in) 

 Ofloxacin-N-

oxide 

47.9 27 as R-(+)- 

and 63 as S-(-

)- 

19.8 as R-(+)- 

and S-(-)- 

353.8 as S-(-

)- 

  Desmethyl-

ofloxacin 

52.0 89 as R-(+)- 

and 120 as S-

(-)- 

33.4 as R-(+)- 

and 92.1 as S-

(-)- 

576.4 as S-(-

)- 

Norfloxacin - 1.1 - Norfloxacin 1.60 - 3.2 0.03 1.3 - 27.5 

Nalidixic acid 0.0 (as 

J01MB02) 

- - Nalidixic acid 2.50 - 6.3 - 1.0 - 1.5 

Lomefloxacin - - - Lomefloxacin 1.35 - 1.8 - 0.7 - 3.5 

Moxifloxacin  

  

- 39.6 - Moxifloxacin 2.22 - - 0.8 - - 6.8 

Moxifloxacin-

N-sulphate 

2.40 - - 19.0 

Prulifloxacin  

  

- - 4446 Prulifloxacin  - - - - - 44.1  - 

Ulifloxacin   2.33 - - 52.1 

a Data obtained from the Norwegian Prescription Database (NorPD) at the Norwegian Institute of Public Health (http://www.norpd.no) 
b Data obtained from the Prescription Cost Analysis for England 2015 by Prescribing & Medicines Team Health and Social Care Information Centre  
c Data obtained from Agenzia Italiana del Farmaco (http://www.agenziafarmaco.gov.it). In particular, consumption in DDD for detailed pharmaceutical was obtained by DDD/1000 

ab die value calculated from the proportion between DDD/1000 ab die of quinolones (3.5) and DDD total of quinolones (77.8 millions) 

 

http://www.agenziafarmaco.gov.it/
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Figure 1 Average population-normalised mass loads for ciprofloxacin and its metabolite. 
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Figure 2 Average population-normalised mass loads for ofloxacin and its 

metabolites. Mean EFs are shown in the secondary vertical axis. 
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Figure 3 Average population-normalised mass 

loads for other quinolones investigated. In the 

case of chiral quinolones, mean EFs are shown in 

the secondary vertical axis (DF means 

diasteroisomeric fraction). 
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Figure 4 Pan-European monitoring of quinolones (ABs: ciprofloxacin, ofloxacin, lomifloxacin, norfloxacin, nalidixic acid, moxifloxacin, ulifloxacin 

and flumequine) and qnrS gene in wastewater. 
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