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Table of content graphic:

ABSTRACT 

Selective area growth is a promising technique to realize semiconductor-

superconductor hybrid nanowire networks potentially hosting topologically protected 

Majorana-based qubits. In some cases, however, such as molecular beam epitaxy of InSb 

on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily 

overlap. To overcome this challenge we propose Metal-Sown Selective Area Growth (MS 

SAG) technique which allows decoupling selective deposition and nucleation growth conditions by 

temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets 

only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of 

InSb under Sb flux from In droplets which act as a reservoir of group III adatoms, done at relatively 

low temperatures favoring nucleation of InSb, (iii) homoepitaxy of InSb on top of formed nucleation 
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layer under simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal 

quality. We demonstrate that complex InSb nanowire networks of high crystal and 

electrical quality can be achieved this way. We extract mobility values of 10,000–25,000 

cm2 V-1 s-1 consistently from field-effect and Hall mobility measurements across single 

nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic 

transport in a 440 nm long channel in a single nanowire under magnetic field below 1 T. 

We also extract a phase-coherent length of ~8 µm at 50 mK in mesoscopic rings.

Semiconductor-superconductor hybrid nanowire (NW) networks are promising 

candidates for hosting topologically protected Majorana-based qubits, which have a 

potential to revolutionize the emerging field of quantum computing.1 The III-V 

semiconductor InSb is of particular interest in this regard owing to its large g-factor, which 

enables a relatively small magnetic field to drive a hybrid semiconductor-superconductor 

NW into the topological regime. Moreover the small effective mass favorably leads to a 

large subband spacing.2 So far, mostly single3 or small-scale networks4 of InSb NWs were 

used in Majorana-related transport experiments. To support further progress in the field, 
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advanced NW networks are needed to fulfill the requirements of recent theoretical 

proposals.5–8 Selective area growth (SAG) is a promising technique for realization of in-

plane NW networks, where a crystalline III-V substrate is covered with an amorphous 

mask and growth proceeds selectively only inside lithographically defined openings. 

However, early results suggest that in contrast to well-studied III-V materials such as InAs 

and GaAs,9–11 the special case of InSb SAG by molecular beam epitaxy (MBE) has 

selectivity conditions that do not overlap with its preferred nucleation conditions.12,13 This 

can be overcome by using hydrogen plasma during the growth of InSb but at the cost of 

reduced shape uniformity of different NWs and networks.12,13

In this work we implement a Metal-Sown Selective Area Growth (MS SAG) technique 

which allows to decouple nucleation and selective growth conditions. MS SAG consists 

of three steps schematically outlined in Figure 1 a: 

(i) Selective metal sowing – supplying only In flux at relatively high substrate 

temperature favoring selective In droplets (“seeds”) deposition only inside the 

mask openings, 
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(ii) InSb nucleation layer – supplying only Sb flux (”watering”) to convert In 

droplets into InSb networks at relatively low temperatures which favor 

nucleation of InSb; In droplets act as a sole source of group-III element in that 

case.

(iii) Homoepitaxy of InSb on top of the nucleation layer - growth is continued 

under simultaneous supply of In and Sb fluxes at conditions favoring 

selectivity and high crystal quality; improving faceting and achieving desired 

out-of-plane dimensions. 

The broad applicability of developed technique is confirmed by successful fabrication 

of InSb NW networks on InP and GaAs substrates of both <001> and <111>B orientations 

with InP(111)B case being studied in details. The high crystal quality and composition of 

both isolated NW segments and junctions are demonstrated by Aberration Corrected High 

Angle Annular Dark Field Scanning Transmission Electron Microscopy (AC-HAADF-

STEM) and Electron Energy Loss Spectroscopy (EELS). Consistent mobility values are 

extracted from field-effect and Hall mobility measurements across single NW segments 
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as well as wires with junctions. Moreover, we demonstrate ballistic and phase-coherent 

transport in single NWs and mesoscopic rings, respectively.

All samples presented in this work are grown by MBE. Prior to loading in the MBE 

chamber, a hard mask is fabricated by covering the substrate with ~14 nm thick 

amorphous dielectric layer by plasma-enhanced chemical vapor deposition in which the 

NW pattern is defined by standard lithography techniques.9,10 The substrate temperature 

(T) is measured by a calibrated pyrometer for T > 500 °C and by extrapolating pyrometer 

values using a thermocouple reading for T < 500 °C. Fluxes of In (FIn) and Sb (FSb) are 

presented in equivalent planar InSb monolayers per second (MLInSb/s).9,14 A standard 

substrate deoxidation procedure is used where it is kept under As flux (4x10-6 torr) for 

5 min for both GaAs and InP substrates at T = 580 and 500 °C, respectively. Note that 

500 °C is the highest temperature used in the entire process of InSb MS SAG on InP 

substrates which makes it compatible with CMOS technology. In the following text the 

case of InSb MS SAG on InP(111)B substrate is described in detail, while similar 

considerations hold for other substrates as demonstrated by successful growth of InSb 

MS SAG on GaAs(001) (see Supporting Information SA).

Page 7 of 43

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 1. MS SAG of InSb NW networks. (a) Schematics of MS SAG step sequence with SEM images (40° 

tilt)  illustrating the individual steps on patterned InP(111)B substrates: (b) deoxidized substrate, (c) step (i), 

selective sowing of In at T(i) = 465 °C, (d) step (ii), conversion of In into InSb solely under Sb flux at T(ii) = 

360 °C, (e) step(iii), continuing in conventional SAG regime with simultaneous supply of In and Sb fluxes 

at T(iii) = 430 °C. Insets highlight faceting evolution from (ii) to (iii). 

In a previous work, we demonstrated selective homoepitaxy of InSb wires on 

InSb(111)B and InSb(001) substrates following conventional SAG method.9 However, in 

case of heteroepitaxy of InSb on InP(111)B the conventional SAG method, in which both 

elemental fluxes provided continuously, results in poor filling of the mask openings due 

to unfavorable nucleation. This is true for SAG at both the relatively high substrate 

temperature of T = 430 °C favoring selectivity conditions (Supporting Information Figure 

S3 a)15 and all the way down to the relatively low substrate temperature of T = 360 °C 
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favoring nucleation of planar InSb layers (Supporting Information Figure S3 b).16 To 

overcome this issue, we have turned our attention to an Sb-induced growth technique 

previously proposed for planar InSb growth for the case when the optimal growth 

conditions are not known.14 In that method In is pre-deposited in the absence of Sb flux 

and then converted into planar InSb via exposure to Sb flux (under no concomitant group 

III flux).17 For planar growth on unmasked substrate this process can be monitored by an 

in situ reflection high-energy electron diffraction (RHEED) method.14 We have observed 

clear RHEED signal intensity oscillations on planar InSb(001) surfaces, indicating layer-

by-layer growth, for substrate temperatures up to Tcrit = 400 °C, above which no 

oscillations were visible (Supporting Information Figure S4).

In this work we have adapted the above described Sb-induced growth technique to 

substrates with patterned amorphous masks. Here we give a more detailed description 

of individual steps during MS SAG (Figure 1 a). 

After successful deoxidation (Figure 1 b), during step (i), only an In flux is supplied to 

the sample at elevated substrate temperature T(i) resulting in stochastic positioning of In 

droplets selectively inside the mask openings (see Figure 1 c). This becomes possible 
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due to the higher desorption rate of In adatoms from the amorphous mask compared to 

crystalline substrate surface.9 Note that we have observed the mask dielectric layer being 

occasionally damaged by the droplet (See Supporting Information SD).

During step (ii) the substrate temperature is decreased to T(ii) ≤ Tcrit for the subsequent 

conversion of In into InSb under Sb flux (without concomitant In flux) to form the InSb 

nucleation layer. Note that despite the fact that only Sb flux is being supplied to the 

surface the growth proceeds under a local In-rich regime around the droplet because it 

acts as a metal source. However, this growth mode is not to be confused with standard 

in-plane vapour-liquid-solid where the droplet is moving along with growth front.18–21 

Resulting InSb NW networks filling the mask openings can be seen in Figure 1 d. Attempts 

to convert In into InSb above Tcrit result in poor nucleation and highly non-uniform growth, 

similarly to conventional SAG, as shown in Supporting Information Figure S3 b. 

During the last step (iii) the substrate temperature is raised to T(iii) at which InSb growth 

can be continued via a conventional SAG method with both In and Sb fluxes supplied 

simultaneously. Here the importance of previous steps (i)+(ii) is demonstrated when 

comparing step (iii) of InSb MS SAG (Figure 1 d) to InSb growth without nucleation layer 
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(Supporting Information Figure S3 a), performed under the same growth conditions. 

Indeed, InSb growth proceeds uniformly only in the regions where it is already nucleated 

and not on bare InP(111)B surfaces. As can be seen in Figure 1 d (inset) the InSb NW 

networks faceting improves at the step (iii), except for the region next to the initial In 

droplet position, where growth is not uniform. A similar effect was reported for quantum 

nanorings obtained via droplet epitaxy and is attributed to droplet induced damage of 

surrounding III-V surface22. Because of this limitation, the active region of devices should 

be carefully selected to be away from the droplet. 
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Figure 2. Schematics of diffusion limited growth during the MS SAG for samples (a) w/o and (b) w/ the 

mask. SEM images illustrating InSb MS SAG steps for mask openings comprising of (c) 100 nm-wide 

stripes, (d) interconnected networks of 130 nm-wide stripes, (e) large open areas and 2 µm-wide stripes.

We emphasize that metal droplets formed during MS SAG step (i) act as a sole source 

of group III adatoms during step (ii). Therefore, the maximum characteristic in-plane size 

of NW network is defined by surface diffusion length (D) of In adatoms on InP surface at 
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step (ii) as schematically illustrated in Figure 2 a, b. This effect becomes evident when 

comparing InSb growth evolution during MS SAG in mask openings of different 

characteristic sizes and geometries (Figure 2 c, d, e). Following the methodology 

proposed for III-V droplet epitaxy23,24 we have estimated D(ii) = 25,8 ± 1,3 µm at T(ii) = 

360 °C from the diameter of the InSb spread around the initial droplet position on large 

open areas of InP surface (Figure 2 e). Note that in case of complex networks D can be 

significantly reduced due to non-trivial migration paths introduced by mask confinement 

(see Figure 2 d panel (ii)).

Previously it was demonstrated that D can be improved by increasing the substrate 

temperature and/or decreasing group V flux.23,24 However, there is limit to such 

improvement due to Tcrit and the finite diffusion length of In adatoms under vacuum 

conditions, which we determined to be D(i) = 52 ± 14 µm (at T = 465 °C and residual 

pressure in the chamber of 1x10-10 torr). Future work is required to overcome this limit.

Direct measurements of D(iii)  are complicated due to InSb lateral growth being 

suppressed by non-favorable nucleation conditions in the mask regions which are not 

already filled with InSb (e.g. Figure 2 d panels (ii) and (iii)). However, it is reasonable to 
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assume that D(iii) ≥ D(ii) because of homogeneous out-of-plane growth of the InSb 

segments.

Figure 3. 5x5 InSb NW network on InP(111)B substrate with its morphology accessed by (a) SEM and (b) 

AFM with (c) the section highlighting the steps on its surface. Chemical composition of the similar network 

sliced through the 5 junctions (indicated by white arrows) observed by (d) HAADF and (e) EELS elemental 

maps. HAADF-STEM of (f) the top section of the InSb network and (g) InSb/InP interface containing partial 

twin plane (red arrow) with (h) dilatation and (i) rotation maps obtained through GPA applied to the peaks 

circled on a Fast Fourier Transform (FFT) power spectrum in the inset of panel (g).
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Out-of-plane morphology of a representative 5x5 InSb NW network with characteristic 

size of less than 7 µm (Figure 3 a) was accessed by atomic force microscopy (AFM) as 

shown in Figure 3 b. It reveals that the network’s top facet is almost entirely atomically 

flat with only occasional large (>7nm in height) descending steps at the further end from 

the initial droplet position (Figure 3 c). No additional features were found around the NW 

junctions such as thickening or shape distortion previously observed in case of merging 

of out-of-plane NWs.4

Focused-ion beam (FIB) prepared lamella were cut longitudinally along  < 112 >

direction through the 5x5 InSb NW network similar to the one shown in Figure 3 a. 

Excellent chemical uniformity across the entire cut was confirmed by the Z-contrast of 

high-angle annular dark-field (HAADF) imaging (Figure 3 d) and electron energy loss 

spectroscopy (EELS) elemental composition mapping (Figure 3 e). Atomic resolution 

HAADF-STEM imaging revealed a B-polar pure zincblende (ZB) crystal structure of InSb 

on the InP (111)B substrate (Figure 3 f and S8 e-f).25 At the InSb/InP interface we 

observed formation of periodic array of in-plane misfit dislocations in both  < 112 >

(Figure 3 g, I and S8 c) and  (Figure S7 b) directions.26 Geometric Phase < 110 >
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Analysis (GPA) of the interface region (Figure 3 h, i) suggest that these defects are 

responsible for a full plastic strain relaxation of ~10.4% lattice mismatch between InSb 

and InP, as expected for largely mismatched III-V epitaxial systems.9,10,12,27 Moreover, 

occasional horizontal single twin boundaries were observed in close (< 10nm) region to 

the InSb/InP interface (red arrow in Figure 3 g) as well as transverse 70.53° double twin 

boundaries (Figure S8), similarly to previously reported InAs SAG on InP(111)B 

substrate.9 Additionally, we emphasize that we found no significant difference in structural 

nor chemical uniformity of NW junction regions compared to junction-free segments. 

Refer to Supporting Information SE for TEM examination of other wire orientations. 

Having verified the structural quality of our InSb NWs and networks we now move to 

low-temperature electrical measurements to characterize the relevant scattering length 

scales in classical and quantum transport. After MBE growth, the wafer is diced into 5 ×

 chips, each of which contains various semiconducting structures available for 5 mm

transport characterization devices. Ohmic contacts, dielectrics and gates are fabricated 

by standard means (Supporting Information SF). Devices are then cooled down in a 

dilution refrigerator with a base temperature of . Measurements are performed 𝑇~20 mK
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with standard DC + lock-in techniques at frequencies below 100 Hz in either voltage-

biased or current-biased circuits.

Initial characterization is done by measuring the electron mobility defined in the Drude 

model for diffusive transport. We report on two types of strategies commonly employed 

in the literature to extract mobility using transport in one and two-dimensional 

nanostructures. The first is that of the classical Hall effect (Figure 4a-d) and the second 

is the long-channel field-effect transistor (FET) measurements (Figure 4e,f).

While Hall effect measurements have been the standard for two-dimensional materials, 

the planar device geometry required is not as easily achieved for NWs. Although Hall 

effect has been measured in InAs NWs by making use of the surface electron 

accumulation layer in that material,28 electron depletion at InSb surfaces precludes similar 

attempts on InSb NWs.29 Thus electron mobility in InSb NWs has been most commonly 

extracted either by taking the peak transconductance30 or by fitting FET pinch-off 

curves.31 Both Hall effect and field-effect methods assume the Drude model of 

conductance  (  are mobility, conductivity, carrier density per volume and 𝜇 = 𝜎/(𝑛𝑒) 𝜇,𝜎,𝑛,𝑒

elementary charge, respectively). For both methods  is measured directly, but  is 𝜎 𝑛
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obtained differently for each method. Hall effect measurements give direct access to  𝑛

via the Hall resistance  but field-effect measurements rely on estimation of  via 𝑅H 𝑛 𝑄 = 𝑒𝒱

. Here,  is the gate-to-device capacitance and  the gate voltage (  and  are 𝑛 = 𝐶𝑉g 𝐶 𝑉g 𝒱 𝑄

the volume of the semiconductor and total charge). A major drawback of this method is 

that only the product  can be reliably extracted from a fit to the data. Acquiring an 𝜇𝐶

accurate estimation of  then relies crucially on a reliable estimation of  (or ), which is 𝜇 𝐶 𝑄

not trivial for nanodevices with non-ideal semiconductor-dielectric interfaces. However, 

the design flexibility of SAG allows us to easily overcome this drawback in straight NWs 

by fabricating NW Hall bars and measuring the carrier density via , which does not rely 𝑅H

on any  estimation and only requires NW width and length32,33 as input parameters. 𝐶

Below, we first present such junction density and Hall mobility measurements assuming 

uniform electron sheet density throughout the Hall bar. The information obtained from this 

measurement then allows us to tune up a more detailed model of the device capacitance 

that includes local electron density variations and can be used for field-effect mobility 

estimations. Finally, comparison between mobilities obtained by the two methods are 

discussed.
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Transport measurements in Hall-bar devices are shown in Figure 4 a-d. A  10 nA AC-∼

current bias  is applied as depicted in the circuit in Figure 4a. The longitudinal voltage 𝐼bias

response along the NW  and the transverse voltage across a junction  are 𝑉𝑥𝑥 𝑉𝑥𝑦

measured using two synchronized lock-in amplifiers. Examples of the raw data taken 

during such a measurement are shown in Supporting Information SG. Using the Hall 

effect we extract the density  in the NW junction through , where 𝑛j 𝑉𝑥𝑦 = 𝐼bias𝐵 ⊥ /(𝑛j,2D𝑒)

 is the applied out-of-plane magnetic field and  the electron sheet density in the 𝐵 ⊥ 𝑛j,2D

junction, defined as  with  being the NW thickness. By measuring  and fitting it 𝑛j/𝑡 𝑡 𝑉𝑥𝑦

linearly in relation to the applied magnetic field, we obtain directly . This measurement 𝑛j,2D

is repeated on each device at different  values by tuning  (Figure 4b). Next, we can 𝑛j,2D 𝑉g

use the four-terminal conductivity along the NW , with ( ) the length of 𝜎𝑥𝑥 =
𝐼bias

𝑉𝑥𝑥
𝐿𝑥𝑥/(𝑊𝑡) 𝐿𝑥𝑥

the channel and ( ) the width, to determine the Hall mobility as  (Figure 𝑊 𝜇H = 𝜎𝑥𝑥/(𝑛j𝑒)

4c). Strictly speaking, the estimation of mobility requires the channel density  in the 𝑛c

straight wire segment instead of . This inadequacy resulting from the uniform density 𝑛j

assumption will be addressed below once we calibrate the electrostatic simulations with 
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the Hall measurement results and use it to model single NWs. As  increases,  𝑉g 𝜇H

increases until it saturates at high positive  to value in the range 25,000 cm2 V-𝑉g 10,000 ―

1 s-1. Increased scattering at low  points towards a charged scattering,34–36 with defects 𝑛

residing either in the NW interior or the semiconductor surfaces37 and become better 

screened as  increases. At higher , the saturation or slight decrease of  is suggestive 𝑛 𝑛 𝜇

of surface roughness being the dominant scattering mechanism.38,39 Such roughness and 

defects are known to occur in native InSb oxide surfaces40,41 and become more relevant 

as the electron distribution gravitates towards the semiconductor-dielectric surface under 

positive gate voltages, as evidenced by our electrostatic simulations. Other factors 

including polar molecule adsorbants on InSb31 and imperfections in the dielectric used 

may also contribute to the surface scattering. We can also calculate the mean free path, 

or the elastic scattering length, as , where  is the two-dimensional 𝑙e = 𝜇ℏ𝑘F/𝑒 𝑘F = 2𝜋𝑛2D

Fermi wave vector. Assuming typical values of  1×1012 cm-2 and  2×104 cm2/(V 𝑛2D ≈ 𝜇 ≈

s), we estimate  330 nm. These results compare favorably with existing literature on 𝑙e ≈

InAs or InSb NW crosses produced by either SAG or VLS methods.10,12,32,33 We would 

like to stress that as Hall effect measurements probe the transport properties inside the 
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NW cross junctions, the high mobility demonstrates the promising potential of our planar 

SAG approach in realizing advanced multi-terminal NW devices for topological quantum 

computing.8,7,6

In order to benchmark our MS SAG InSb NWs with their VLS-grown counterparts using 

the same method31 and to compare transport in single wires and cross structures, we also 

measured field-effect mobility  in both single NWs and the Hall bars described above. 𝜇FE

In the former case, NW FETs (Figure 4d) are fabricated with contact spacing either  = 2 𝐿

or 3 µm and a top gate that wraps around the transport region. For the latter we simply 

float the four transverse voltage probing arms of the NW Hall bars and perform two-

terminal measurements from the left lead to the right lead. We measure current while 

varying  in both directions and fit the DC-conductance  with 𝑉g 𝐺

(1)𝐺(𝑉g) = [𝑅s +
𝐿2

𝜇FE𝑄𝑐(𝑉g)]
―1

which takes as fitting parameters , the total resistance in series with the transistor  𝜇FE 𝑅s

and any unaccounted-for pinch-off threshold voltage  by the simulated amount of Δ𝑉th

charge  accumulated in the transport channel as a function of . Here, theoretical 𝑄𝑐(𝑉g) 𝑉g
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modeling of the charge accumulation is achieved via 3D Thomas-Fermi (T-F) finite-

element electrostatic simulations, which takes into account a layer of interface charge at 

the semiconductor-dielectric interface.42,43 The T-F approximation is well applicable to 

high electron density regimes when the electron Fermi wavelength is smaller than the 

device width .42 The interface charge density  is obtained by setting it as a fitting 𝜆F < 𝑊 𝐷it

parameter while calibrating the model of the NW cross on the Hall-bar charge density 

measurement results shown in Figure 4c. The fitted values of  for the 6 Hall bars ranges 𝐷it

from 0.8×1012 cm-2 eV-1 to 6.8×1012 cm-2 eV-1 with the average being 2.9×1012 cm-2 eV-1, 

similar to experimental findings of the quantity on InAs NW transistors in reference.44 In 

the case of linear charge accumulation  and , this method reduces 𝑄 = 𝐶(𝑉g ― Δ𝑉th) 𝐷it = 0

to the standard literature apporach.31 Due to different surface to volume ratios and the 

gate geometry, we observe typically different electron density in the junction ( ) and in 𝑛j

the straight channel ( ) for NW Hall bars. The translation from  to  (and thus  of the 𝑛c 𝑛j 𝑛c 𝑄𝑐

FET devices) and other details of the model are described in the Supporting Information 

SH. The example of such a pinch-off curve and the device on which it was measured, 
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together with the simulated charge area density by our theoretical model, are shown in 

Figure 4e.

We have thus measured sixteen FETs and the results are summarized in Figure 4f. The 

averaged field-effect mobility  for upward gate sweeps, 𝜇FE = 1.9 ± 0.6 × 104 cm2 V ―1s ―1

agreeing roughly with  data. The  measured on NW Hall bars are displayed in Figure 𝜇H 𝜇FE

4d as horizontal lines spanning the gate range in which they are measured. The difference 

between  and  may be attributed to the fact that they do not reflect transport 𝜇FE 𝜇H

properties in the exact same regions in the device. Where  is measured between the 𝜇FE

normal contacts,  is measured only between the voltage probes of the Hall bar. 𝜇H

Furthermore, hysteresis in pinch-off curves and the finite surface charge density required 

to match simulations with the measured  indicate the presence of a dynamic surface 𝑛

charge density at the semiconductor-dielectric interface, which complicates the 

comparison. However, we observe that the extracted  of single NWs, of entire Hall 𝜇FE

bars and  are all in a similar range, which would mean that the cross junctions do not 𝜇H

disproportionately add more scattering. Such cross junctions are crucial ingredients for 
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integration of parity read out needed for measurement-based braiding of Majorana zero 

modes.8,7,6

  

Figure 4. Diffusive transport properties of NWs and junctions demonstrating high electron mobility in both 

Hall effect and field-effect transistor measurements. (a) False-colored SEM image of a Hall bar measured 
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(Device C) with illustration of the four-terminal circuit used for Hall effect measurements. Blue regions mark 

the Cr/Au Ohmic contacts evaporated on top of the sulphur-passivated surface of InSb. The purple region 

marks the gate electrode, separated from the NW by a layer of  dielectric (not visible) sputtered globally  SiN𝑥

onto the entire chip. Blue is the NW. The scale bar is 1 µm. (b) View of the NW model used for electrostatic 

simulation of the Hall bar junctions. The potential profile is simulated for the NW-cross region depicted 

assuming appropriate material parameters and with input from the Hall measurements to establish the 

surface charge density. The tiled inset shows an example of the calculated electron density profile in the 

cross section. (c) Carrier concentration of the 6 NW Hall bars obtained from classical Hall effect 

measurements via , together with the calibrated simulation result of them. (d) Hall 𝑛2D = (𝑒Δ𝑅H/Δ𝐵) ―1

mobility calculated from carrier concentration and sample resistivity obtained by Hall measurements 

described above according to . Horizontal lines in each color represent the corresponding field-𝜎 = 𝑛𝑒𝜇

effect mobility on each device. (e) An example pinch-off curve (orange) of the FET device used for field-

effect mobility extraction and its SEM image shown in the top inset (scale bar is 1). A DC bias voltage 

 10 mV is applied between source and drain contacts (blue).  is measured while applying  to the 𝑉bias = 𝐺 𝑉g

gate (pink). Blue dashed lines are best fits of Eq. (1) to the data from which we extract . (f) Field effect 𝜇

mobility of all NW FETs measured. All curves were taken by sweeping the gate both from below pinch-off 

to saturation (upwards) and in the opposite direction (downwards). Horizontal dashed lines indicate the 

averaged mobility of all devices in both directions.
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With the mobilities we observed in long channels, we set out to measurement of NW 

quantum point contacts (QPCs) and confirm ballistic transport in our InSb MS SAG 

NWs.4,45–47 Indeed we observe ballistic transport in such a single NW QPC device with 

440 ± 20 nm contact spacing (Figure 5a-d), as well as in other devices (Supporting 

Information SI). We measure the differential conductance of the device shown in Figure 

5a as a function of DC- ,  and . Figure 5b shows pinch-off traces taken at 𝑉bias 𝑉g 𝐵 ∥ 𝑉bias

 in DC under increasing  from left to right (offset horizontally for clarity). A = 0 V 𝐵 ∥

conductance plateau at  begins to emerge at around  as cyclotron 𝐺0 = 2𝑒2/ℎ 𝐵 ∥ = 1.2 T

orbits gradually suppress backscattering.45 More plateaus appear at higher fields and at 

other multiples of  as Zeeman splitting lifts the electron spin degeneracy of the 0.5𝐺0

subbands. The red linecut at  show conductance plateaus of the first, third and 𝐵 ∥ = 3.9 T

fifth spin-split subbands. We attribute slight deviations of the plateaus from half-integer 

multiples of  to unaccounted-for contact resistance.𝐺0

We investigate the evolution of the conductance plateaus with  (Figure 5c). For 𝐵 ∥

higher , the plateaus widen and become more clear as spin splitting becomes larger. 𝐵 ∥

At around , the higher-energy spin subband of the lowest orbital ( ) crosses 𝐵 ∥ = 3.9 T 𝐸1↑
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the lower-energy spin subband of the second orbital ( ), rendering the  plateau too 𝐸2↓ 1𝐺0

narrow to distinguish until  when it re-emerges after the crossing. As for 𝐵 ∥ >  5 T 𝐵 ∥

, clear plateau features become obscured by mesoscopic conductance < 1. 2 T

fluctuations which can be attributed to backscattering as a result of uncontrolled potentials 

induced by non-gated section of the transport channel and/or by the contacts to the 

semiconductor.

Bias spectroscopy taken at  (Figure 5d) further reveals relevant energy scales 𝐵 ∥ =  3 T

via diamond-shaped conductance plateaus of the first few spin-split subbands.45,46 The 

 plateau vanishes at  when the chemical potential difference between 0.5𝐺0 𝑉bias ≈ 8 mV

the two leads is equal to the energy splitting between the first two spin-split subbands.48–50 

The relation , where  is the Bohr magneton, allows us to 𝑒𝑉bias = 𝐸1↑ ― 𝐸1↓ = 𝑔𝜇B𝐵 ∥ 𝜇B

extract a Landé -factor of , in accordance with previous observations in InSb VLS 𝑔 𝑔 ∼ 46

NWs.45,51,52 The subband spacing between the first two spin-degenerate orbitals is 

similarly calculated by summing the width of the first two diamonds to be . We ∼ 12 meV

consistently observe ballistic transport on length scales of several hundred nm in multiple 

InSb MS SAG QPC devices (Supporting Information SI).

Page 27 of 43

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



With ballistic transport established in InSb MS SAG, we finally move to demonstrate 

phase coherent transport and extraction of inelastic scattering length, a.k.a. phase 

coherence length (Figure 5e-g) by a quantum interference experiment. Crucially, this 

requires the ability to grow high-quality networks as demonstrated in Figure 2. Such 

networks are requisite ingredients for implementing proposals for manipulating Majorana 

states via electron teleportation8 and for making topological qubits,6,7 provided electrons 

retain their memory of the quantum mechanical phase throughout the structure. The 

canonical experiment for proving phase-coherent transport is by measuring the 

conductance of a semiconducting loop modulated by Aharonov-Bohm (AB) interference 

(Figure 5e).4,53 In such magnetoconductance measurements the two-terminal 

conductance is probed from one side of the loop, with surface area , to the other while 𝐴

it is threaded by a flux . If the transport is phase coherent, the applied flux Φ = 𝐵 ⊥ 𝐴

induces conductance oscillations as a result of the quantum interference between 

electron trajectories passing through the two arms of the loop. The periodicity of the 

oscillations depends on the loop area  and the magnetic flux quantum  as 𝐴 Φ0 = ℎ/𝑒 Δ𝐵 ⊥

.= Φ0/𝐴
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Figure 5f plots two representative magnetoconductance measurement results in MS 

SAG Aharonov-Bohm (AB) loop devices. We observe higher frequency oscillations 

superimposed on an irregular slow-varying background of mesoscopic conductance 

fluctuations. After subtracting the background, the conductance clearly exhibits periodic 

oscillations as shown in the example in the inset of Figure 5f. Such magnetoconductance 

traces are then taken with the device depicted in Figure 5e for several values of  and 𝑉g

their Fourier spectra are averaged to reveal a clear peak at the expected frequency in 

Figure 5f. Its second harmonic is also visible in the spectrum, which results from AB 

interference between electron paths of opposite directions traversing the entire loop. The 

peak broadening can be explained by the finite width of the wire, which sets upper and 

lower bounds on the periodicity. The expected bounds coincide well with the observed 

peak.

We can extract the electron phase coherence length  in our devices by measuring the 𝑙𝜙

temperature dependence of the first harmonic peak amplitude. In the case of diffusive 

transport, the peak amplitude is expected to follow the relation  𝐴ℎ/𝑒 = 𝐴0exp( ―𝑎 𝑇)

where  and  are fitting parameters and the phase coherence length is described in 𝐴0 𝑎
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these terms as  with  being the loop circumference.54,55 We measure AB 𝑙𝜙 =   
𝐿

𝑎 𝑇 𝐿

oscillations in the same range of magnetic field at different temperatures on the device 

shown in Figure 5e and fit the first-harmonic peak in each Fourier spectrum with a 

Gaussian envelope. The peak amplitudes thus obtained are then fitted with  as 𝐴0,𝑎

parameters and the resulting  dependence on temperature is plotted as the orange 𝑙𝜙

dashed line in Figure 5g. To visualize the standard deviation of the fitting procedure, we 

translate the oscillation amplitude at each measured temperature back into a 

decoherence length scale and plot them in the same panel together with the fitting 

standard deviation. The phase coherence thus extracted is about 7.5 µm at 50 mK, the 

measured electron temperature in our fridge.

In summary, we have demonstrated the Metal-Sown Selective Area Growth technique 

to overcome the challenge of non-overlapping nucleation and selective growth conditions 

and applied it to InSb heteroepitaxy. This is achieved by selective group III adatoms pre-

deposition at selectivity favoring conditions and its subsequent conversion into III-V 

crystal under group V flux at nucleation favoring conditions. We have successfully 
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obtained complex InSb nanowire networks and accessed confirmed their high structural 

quality by transmission electron microscopy. Consistently high mobility values are 

extracted by both Hall and field effect techniques in the presence of cross junctions. The 

materials quality was verified by the observation of ballistic transport with conductance 

plateaus up to the fifth spin-split subband and a long phase coherence length of 7.5 µm. 

The results point at promising applications of InSb nanowire networks to advanced 

topological hybrid semiconducting/ superconducting networks.
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Figure 5. Ballistic transport under finite magnetic field in an InSb quantum point contact and phase coherent 

transport in a NW loop. (a) False-colored SEM image of the InSb QPC device. Contacts are in blue, gate 

in purple and NW in blue. Scale bar is 500 nm. Magnetic field is applied along the in-plane direction 

perpendicular to the NW. (b) Zero-DC-bias pinch-off traces of the device shown in (a), taken at field values 

between 0 and 5.5 T with intervals of 0.3 T. Each curve is shifted horizontally from the previous one by 

Page 32 of 43

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



+75 mV for clarity. Highlighted curve at 3.9 T shows the first, third and fifth spin-split conductance plateaus. 

(c) Plot of zero-DC-bias conductance under different gate and magnetic field showing the evolution of 

subband plateaus as increasing B gradually suppresses backscattering and increases the splitting between 

the two spin subbands. Dashed lines are guides to the eyes separating conductance plateaus. (d) 

Differential conductance measured as a function of  and gate voltages showing the first few spin-split 𝑉bias

subbands, taken at a magnetic field of 3 T (indicated in panel (c) by a white line). The diamond shapes in 

the color plot provide information on the -factor and subband spacing in the NW as indicated by the labels. 𝑔

(e) Top-view SEM image of one of the InSb NW loops in which Aharanov-Bohm conductance oscillations 

were observed. Ohmic contacts are marked in blue and the wrapping gate in purple. The circumference of 

the loop measured along the geometrical center of the NW is 4. The scale bar is 800 nm. Magnetic field is 

applied perpendicular to the loop. The area enclosed by the NW center is measured to be 0.69 µm2. (f) 

Averaged fast-Fourier-transform spectrum of magnetoconductance traces of the device in (a) among 

different gate voltages, after subtraction of a low-frequency background. The red line identifies the peak 

corresponding to the magnetic field periodicity given by a flux quantum through the area of the loop. Grey 

lines denote the expected widening of the signal peak due to the finite width of the NW. The second 

harmonic peak is identified by the orange line. Inset: the magnetoconductance trace of another loop with a 

larger size (circumference 8 µm, area 3.25 µm2) after subtraction of background. (g) Temperature 

dependence of the extracted phase-coherence length as the orange dashed line, together with the fitting 
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errors and the measured oscillation amplitudes translated into length scales according to the fitting formula 

as scattered dots.

ASSOCIATED CONTENT

Supporting Information. 

The supporting information is available free of charge on the website.

Additional details and figures on InSb MS SAG on GaAs(001) substrates, 

demonstration of trials of conventional SAG of InSb, RHEED oscillation during planar 

InSb growth, In droplet induced damage to the mask, and strain relaxation in InSb MS 

SAG on InP(111)B substrates. Device fabrication details, examples of Hall effect 

measurements, details on electrostatics simulations, and all other QPC plateaus 

observed in measurements are given as well (PDF).
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