1,130 research outputs found

    Orbital debris environment for spacecraft designed to operate in low Earth orbit

    Get PDF
    The orbital debris environment model is intended to be used by the spacecraft community for the design and operation of spacecraft in low Earth orbit. This environment, when combined with material-dependent impact tests and spacecraft failure analysis, is intended to be used to evaluate spacecraft vulnerability, reliability, and shielding requirements. The environment represents a compromise between existing data to measure the environment, modeling of this data to predict the future environment, the uncertainty in both measurements and modeling, and the need to describe the environment so that various options concerning spacecraft design and operations can be easily evaluated

    Highly Porous and Drug-Loaded Amorphous Solid Dispersion Microfiber Scaffolds of Indomethacin Prepared by Melt Electrowriting

    Get PDF
    Melt electrowriting (MEW) is an additive manufacturing technology enabling the production of highly porous microfiber scaffolds, suggested in particular for use in biomedical applications, including drug delivery. Indomethacin (IND) is a nonselective anti-inflammatory drug, for which sublingual delivery could offer advantages such as rapid absorption by the veins in the mouth floor while overcoming the side effects of peroral delivery such as damage to the gastrointestinal mucosa barrier. This study introduces MEW as a processing method to obtain rapid-dissolving drug-releasing scaffolds, containing IND as a model drug, for sublingual drug delivery applications. For this, an amorphous solid dispersion (ASD) of IND in combination with a poly(2-oxazoline)-based amphiphilic triblock copolymer excipient is introduced, enabling ultra-high drug loading. We prepared highly porous, melt electrowritten drug-loaded scaffolds with different polymer/IND w/w ratios up to 1:2 and assessed their morphology, amorphicity, and IND release rate. The results show completely amorphous dispersion of the polymer and drug after MEW processing resulting in smooth and uniform fibers and rapid dissolution of the drug loaded scaffold. These first water-soluble melt electrowritten IND-loaded microfiber scaffolds break ground as a model for rapid sublingual delivery of ultra-high drug-loaded ASDs.Peer reviewe

    Mid-Infrared Images of Luminous Infrared Galaxies in a Merging Sequence

    Get PDF
    We report mid-infrared observations of several luminous infrared galaxies (LIGs) carried out with the Infrared Space Observatory. Our sample was chosen to represent different phases of a merger sequence of galaxy-galaxy interaction with special emphasis on early/intermediate stages of merging. The mid-infrared emission of these LIGs shows extended structures for the early and intermediate mergers, indicating that most of the mid-infrared luminosities are not from a central active galactic nucleus (AGN). Both the infrared hardness (indicated by the IRAS 12, 25, and 60 \micron flux density ratios) and the peak-to-total flux density ratios of these LIGs increase as projected separation of these interacting galaxies become smaller, consistent with increasing star formation activities that are concentrated to a smaller area as the merging process advances. These observations provide among the first observational constraint of largely theoretically based scenarios.Comment: 10 pages, 3 figures, please refer to ApJ Letters for the final versio

    The Core Collapse Supernova Rate from the SDSS-II Supernova Survey

    Get PDF
    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03<z<0.09). Using a sample of 89 CCSN we find a volume-averaged rate of (1.06 +/- 0.19) x 10**(-4)/(yr Mpc**3) at a mean redshift of 0.072 +/- 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.Comment: Minor corrections to references and affiliations to conform with published versio

    Disrupted network architecture of the resting brain in attention‐deficit/hyperactivity disorder

    Full text link
    Background Attention‐deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders of childhood. Neuroimaging investigations of ADHD have traditionally sought to detect localized abnormalities in discrete brain regions. Recent years, however, have seen the emergence of complementary lines of investigation into distributed connectivity disturbances in ADHD. Current models emphasize abnormal relationships between default network—involved in internally directed mentation and lapses of attention—and task positive networks, especially ventral attention network. However, studies that comprehensively investigate interrelationships between large‐scale networks in ADHD remain relatively rare. Methods Resting state functional magnetic resonance imaging scans were obtained from 757 participants at seven sites in the ADHD‐200 multisite sample. Functional connectomes were generated for each subject, and interrelationships between seven large‐scale brain networks were examined with network contingency analysis. Results ADHD brains exhibited altered resting state connectivity between default network and ventral attention network [ P  < 0.0001, false discovery rate (FDR)‐corrected], including prominent increased connectivity (more specifically, diminished anticorrelation) between posterior cingulate cortex in default network and right anterior insula and supplementary motor area in ventral attention network. There was distributed hypoconnectivity within default network ( P  = 0.009, FDR‐corrected), and this network also exhibited significant alterations in its interconnections with several other large‐scale networks. Additionally, there was pronounced right lateralization of aberrant default network connections. Conclusions Consistent with existing theoretical models, these results provide evidence that default network‐ventral attention network interconnections are a key locus of dysfunction in ADHD. Moreover, these findings contribute to growing evidence that distributed dysconnectivity within and between large‐scale networks is present in ADHD. Hum Brain Mapp 35:4693–4705, 2014 . © 2014 Wiley Periodicals, Inc .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107992/1/hbm22504.pd

    Supportive interactions, negative interactions, and depressed mood

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44025/1/10464_2004_Article_BF00938116.pd

    Photometric Supernova Cosmology with BEAMS and SDSS-II

    Full text link
    Supernova cosmology without spectroscopic confirmation is an exciting new frontier which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of supernovae with their probabilities derived from their multi-band lightcurves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10^4 supernovae, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric supernova cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples which have been cut using typical selection criteria. The latter typically are either biased due to contamination or have significantly larger contours in the cosmological parameters due to small data-sets. We then apply BEAMS to the 792 SDSS-II photometric supernovae with host spectroscopic redshifts. In this case, BEAMS reduces the area of the (\Omega_m,\Omega_\Lambda) contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 supernovae). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are \Omega_m(BEAMS)=0.194\pm0.07. This illustrates the potential power of BEAMS for future large photometric supernova surveys such as LSST.Comment: 25 pages, 15 figures, submitted to Ap

    Crossover Scaling in Dendritic Evolution at Low Undercooling

    Full text link
    We examine scaling in two-dimensional simulations of dendritic growth at low undercooling, as well as in three-dimensional pivalic acid dendrites grown on NASA's USMP-4 Isothermal Dendritic Growth Experiment. We report new results on self-similar evolution in both the experiments and simulations. We find that the time dependent scaling of our low undercooling simulations displays a cross-over scaling from a regime different than that characterizing Laplacian growth to steady-state growth

    Type II-P Supernovae from the SDSS-II Supernova Survey and the Standardized Candle Method

    Get PDF
    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey - II Supernova Survey. The redshifts of these SNe - 0.027 < z < 0.144 - cover a range hitherto sparsely sampled in the literature; in particular, our SNe II-P sample contains nearly as many SNe in the Hubble flow (z > 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. (2009). We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.Comment: Accepted for publication by ApJ; data used in this paper can be downloaded from http://sdssdp47.fnal.gov/sdsssn/photometry/SNIIp.tgz; citation errors correcte

    Single or Double Degenerate Progenitors? Searching for Shock Emission in the SDSS-II Type Ia Supernovae

    Full text link
    From the set of nearly 500 spectroscopically confirmed type~Ia supernovae and around 10,000 unconfirmed candidates from SDSS-II, we select a subset of 108 confirmed SNe Ia with well-observed early-time light curves to search for signatures from shock interaction of the supernova with a companion star. No evidence for shock emission is seen; however, the cadence and photometric noise could hide a weak shock signal. We simulate shocked light curves using SN Ia templates and a simple, Gaussian shock model to emulate the noise properties of the SDSS-II sample and estimate the detectability of the shock interaction signal as a function of shock amplitude, shock width, and shock fraction. We find no direct evidence for shock interaction in the rest-frame BB-band, but place an upper limit on the shock amplitude at 9% of supernova peak flux (MB>−16.6M_B > -16.6 mag). If the single degenerate channel dominates type~Ia progenitors, this result constrains the companion stars to be less than about 6 M⊙M_{\odot} on the main sequence, and strongly disfavors red giant companions.Comment: 28 pages, 3 figure
    • 

    corecore