39 research outputs found

    Puf3p induces translational repression of genes linked to oxidative stress

    Get PDF
    In response to stress, the translation of many mRNAs in yeast can change in a fashion discordant with the general repression of translation. Here, we use machine learning to mine the properties of these mRNAs to determine specific translation control signals. We find a strong association between transcripts acutely translationally repressed under oxidative stress and those associated with the RNA-binding protein Puf3p, a known regulator of cellular mRNAs encoding proteins targeted to mitochondria. Under oxidative stress, a PUF3 deleted strain exhibits more robust growth than wild-type cells and the shift in translation from polysomes to monosomes is attenuated, suggesting puf3Δ cells perceive less stress. In agreement, the ratio of reduced:oxidized glutathione, a major antioxidant and indicator of cellular redox state, is increased in unstressed puf3Δ cells but remains lower under stress. In untreated conditions, Puf3p migrates with polysomes rather than ribosome-free fractions, but this is lost under stress. Finally, reverse transcriptase-polymerase chain reaction (RT-PCR) of Puf3p targets following affinity purification shows Puf3p-mRNA associations are maintained or increased under oxidative stress. Collectively, these results point to Puf3p acting as a translational repressor in a manner exceeding the global translational response, possibly by temporarily limiting synthesis of new mitochondrial proteins as cells adapt to the stress

    Overlapping regions of Caf20 mediate its interactions with the mRNA-5′cap-binding protein eIF4E and with ribosomes

    Get PDF
    By interacting with the mRNA 5′ cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear

    Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants

    Get PDF
    Mechanisms of plasma induced microbial inactivation have commonly been studied with physico-chemical techniques. In this letter, Escherichia coli K-12 and its ∆recA, ∆rpoS and ∆soxS mutants are employed to discriminate effects of UV photons, OH radicals, and reactive oxygen species produced in atmospheric discharges. This microbiological approach exploits the fact that these E. coli mutants are defective in their resistance against various external stresses. By interplaying bacterial inactivation kinetics with optical emission spectroscopy, oxygen atoms are identified as a major contributor in plasma inactivation with minor contribution from UV photons, OH radicals, singlet oxygen metastables, and nitric oxide

    Archetypal transcriptional blocks underpin yeast gene regulation in response to changes in growth conditions

    Get PDF
    The transcriptional responses of yeast cells to diverse stresses typically include gene activation and repression. Specific stress defense, citric acid cycle and oxidative phosphorylation genes are activated, whereas protein synthesis genes are coordinately repressed. This view was achieved from comparative transcriptomic experiments delineating sets of genes whose expression greatly changed with specific stresses. Less attention has been paid to the biological significance of 1) consistent, albeit modest, changes in RNA levels across multiple conditions, and 2) the global gene expression correlations observed when comparing numerous genome-wide studies. To address this, we performed a meta-analysis of 1379 microarray-based experiments in yeast, and identified 1388 blocks of RNAs whose expression changes correlate across multiple and diverse conditions. Many of these blocks represent sets of functionally-related RNAs that act in a coordinated fashion under normal and stress conditions, and map to global cell defense and growth responses. Subsequently, we used the blocks to analyze novel RNA-seq experiments, demonstrating their utility and confirming the conclusions drawn from the meta-analysis. Our results provide a new framework for understanding the biological significance of changes in gene expression: ‘archetypal’ transcriptional blocks that are regulated in a concerted fashion in response to external stimuli

    The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation

    Get PDF
    Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5’cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3’ UTR motif. Caf20p binds all tested motif-containing 3’ UTRs. Caf20p and the 3’UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3’UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Australasia

    No full text

    European civilization : Protestantism and Catholicity compared... /

    No full text
    "Preface to the American edition" dated 1850.Edited from the English translation by C.J. Hanford and Robert Kershaw.Mode of access: Internet
    corecore