118 research outputs found

    Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme

    Get PDF
    Programmed RNA breakage is an emerging theme underlying cellular responses to stress, virus infection and defense against foreign species. In many cases, site-specific cleavage of the target RNA generates 2′,3′ cyclic phosphate and 5′-OH ends. For the damage to be repaired, both broken ends must be healed before they can be sealed by a ligase. Healing entails hydrolysis of the 2′,3′ cyclic phosphate to form a 3′-OH and phosphorylation of the 5′-OH to form a 5′-PO4. Here, we demonstrate that a polynucleotide kinase-phosphatase enzyme from Clostridium thermocellum (CthPnkp) can catalyze both of the end-healing steps of tRNA splicing in vitro. The route of tRNA repair by CthPnkp can be reprogrammed by a mutation in the 3′ end-healing domain (H189D) that yields a 2′-PO4 product instead of a 2′-OH. Whereas tRNA ends healed by wild-type CthPnkp are readily sealed by T4 RNA ligase 1, the H189D enzyme generates ends that are spliced by yeast tRNA ligase. Our findings suggest that RNA repair enzymes can evolve their specificities to suit a particular pathway

    E. coli biofilm adhesion to porous and nonporous surfaces in spaceflight conditions

    Get PDF
    Biofilms are communities of microorganisms that have the capacity to facilitate the development of diseases. Previous literature has found that biofilm growth is affected by surface properties: for example, in some cases there is reduced biofilm formation on porous surfaces compared to non-porous surfaces. As humans continue to explore space, understanding the behavior of biofilms in spaceflight conditions will become critical. Research has indicated that bacterial colonies within microgravity environments exhibit atypical behaviors of increased growth and virulency. To help shed some light on these aspects of biofilm growth, our study analyzed the formation and adhesion of E. coli on porous and nonporous 99.99% aluminum on Earth and in space. The experiment was conducted both on Earth and at the International Space Station to determine if the presence of gravity impacts biofilm physiology on these surfaces. E. coli growth on nonporous and porous aluminum were analyzed using scanning electron microscopy (SEM). Qualitative analysis reveals a possible size difference between the Earth and space bacteria. However, no significant qualitative differences were observed between gravity and microgravity samples on porous and nonporous aluminum surfaces. We are currently analyzing our samples to corroborate or invalidate the presence of structural differences on biofilms in porous vs. nonporous surfaces and Earth vs. space settings. Further research is required to assess the morphology of individual bacteria on these aforementioned materials and growth settings.Terps in Space, NCESS

    Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4

    Get PDF
    The genome of bacteriophage T4 encodes three polynucleotide ligases, which seal the backbone of nucleic acids during infection of host bacteria. The T4Dnl (T4 DNA ligase) and two RNA ligases [T4Rnl1 (T4 RNA ligase 1) and T4Rnl2] join a diverse array of substrates, including nicks that are present in double-stranded nucleic acids, albeit with different efficiencies. To unravel the biochemical and functional relationship between these proteins, a systematic analysis of their substrate specificity was performed using recombinant proteins. The ability of each protein to ligate 20 bp double-stranded oligonucleotides containing a single-strand break was determined. Between 4 and 37 °C, all proteins ligated substrates containing various combinations of DNA and RNA. The RNA ligases ligated a more diverse set of substrates than T4Dnl and, generally, T4Rnl1 had 50-1000-fold lower activity than T4Rnl2. In assays using identical conditions, optimal ligation of all substrates was at pH 8 for T4Dnl and T4Rnl1 and pH 7 for T4Rnl2, demonstrating that the protein dictates the pH optimum for ligation. All proteins ligated a substrate containing DNA as the unbroken strand, with the nucleotides at the nick of the broken strand being RNA at the 3'-hydroxy group and DNA at the 5'-phosphate. Since this RNA-DNA hybrid was joined at a similar maximal rate by T4Dnl and T4Rnl2 at 37 °C, we consider the possibility that this could be an unexpected physiological substrate used during some pathways of 'DNA repair'

    Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC

    Get PDF
    tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNALys(UUU) as a target of EcoPrrC toxicity in yeast

    Mycobacterium tuberculosis Rv3586 (DacA) Is a Diadenylate Cyclase That Converts ATP or ADP into c-di-AMP

    Get PDF
    Cyclic diguanosine monophosphate (c-di-GMP) and cyclic diadenosine monophosphate (c-di-AMP) are recently identified signaling molecules. c-di-GMP has been shown to play important roles in bacterial pathogenesis, whereas information about c-di-AMP remains very limited. Mycobacterium tuberculosis Rv3586 (DacA), which is an ortholog of Bacillus subtilis DisA, is a putative diadenylate cyclase. In this study, we determined the enzymatic activity of DacA in vitro using high-performance liquid chromatography (HPLC), mass spectrometry (MS) and thin layer chromatography (TLC). Our results showed that DacA was mainly a diadenylate cyclase, which resembles DisA. In addition, DacA also exhibited residual ATPase and ADPase in vitro. Among the potential substrates tested, DacA was able to utilize both ATP and ADP, but not AMP, pApA, c-di-AMP or GTP. By using gel filtration and analytical ultracentrifugation, we further demonstrated that DacA existed as an octamer, with the N-terminal domain contributing to tetramerization and the C-terminal domain providing additional dimerization. Both the N-terminal and the C-terminal domains were essential for the DacA's enzymatically active conformation. The diadenylate cyclase activity of DacA was dependent on divalent metal ions such as Mg2+, Mn2+ or Co2+. DacA was more active at a basic pH rather than at an acidic pH. The conserved RHR motif in DacA was essential for interacting with ATP, and mutation of this motif to AAA completely abolished DacA's diadenylate cyclase activity. These results provide the molecular basis for designating DacA as a diadenylate cyclase. Our future studies will explore the biological function of this enzyme in M. tuberculosis

    The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers.

    Get PDF
    Antibody affinity maturation occurs in germinal centers (GCs), where B cells cycle between the light zone (LZ) and the dark zone. In the LZ, GC B cells bearing immunoglobulins with the highest affinity for antigen receive positive selection signals from helper T cells, which promotes their rapid proliferation. Here we found that the RNA-binding protein PTBP1 was needed for the progression of GC B cells through late S phase of the cell cycle and for affinity maturation. PTBP1 was required for proper expression of the c-MYC-dependent gene program induced in GC B cells receiving T cell help and directly regulated the alternative splicing and abundance of transcripts that are increased during positive selection to promote proliferation

    tRNA structural and functional changes induced by oxidative stress

    Get PDF
    Oxidatively damaged biomolecules impair cellular functions and contribute to the pathology of a variety of diseases. RNA is also attacked by reactive oxygen species, and oxidized RNA is increasingly recognized as an important contributor to neurodegenerative complications in humans. Recently, evidence has accumulated supporting the notion that tRNA is involved in cellular responses to various stress conditions. This review focuses on the intriguing consequences of oxidative modification of tRNA at the structural and functional level
    corecore