107 research outputs found

    RIP3: a molecular switch for necrosis and inflammation

    Get PDF
    The receptor-interacting protein kinase 3 (RIP3/RIPK3) has emerged as a critical regulator of programmed necrosis/necroptosis, an inflammatory form of cell death with important functions in pathogen-induced and sterile inflammation. RIP3 activation is tightly regulated by phosphorylation, ubiquitination, and caspase-mediated cleavage. These post-translational modifications coordinately regulate the assembly of a macromolecular signaling complex termed the necrosome. Recently, several reports indicate that RIP3 can promote inflammation independent of its pronecrotic activity. Here, we review our current understanding of the mechanisms that drive RIP3-dependent necrosis and its role in different inflammatory diseases

    Border Security: The Role of RIPK3 in Epithelium Homeostasis

    Get PDF
    Receptor interacting protein kinase 3 (RIPK3) is a crucial inducer of necroptosis. Its activity is controlled by interaction with other signal adaptors through the RIP homotypic interaction motif (RHIM). Recent studies revealed a critical function for RIPK3 in the maintenance of epithelial tissue integrity. In mice with genetic deficiency of the apoptosis adaptors FADD or caspase 8, RIPK3 promotes necroptotic cell death of epithelial cells, leading to excessive and lethal inflammation. In contrast, when FADD and caspase 8 functions are intact, RIPK3 serves as a protector of intestinal epithelial integrity by promoting injury-induced wound repair. In the latter case, RIPK3 promotes optimal cytokine expression by cells of hematopoietic origin. Specifically, bone marrow derived dendritic cells (BMDCs) have an obligate requirement for RIPK3 for optimal secretion of mature IL-1beta and other inflammatory cytokines in response to toll-like receptor 4 (TLR4) stimulation. RIPK3 promotes cytokine expression through two complementary mechanisms: NF-kappaB dependent gene transcription and processing of pro-IL-1beta. We propose that RIPK3 functions in different cell compartments to mediate inflammation through distinct mechanisms

    Establishment of an antibody specific for cancer-associated haptoglobin: a possible implication of clinical investigation

    Get PDF
    We previously found that the serum level of fucosylated haptoglobin (Fuc-Hpt) was significantly increased in pancreatic cancer patients. To delineate the mechanism underlying this increase and develop a simple detection method, we set out to generate a monoclonal antibody (mAb) specific for Fuc-Hpt. After multiple screenings by enzyme-linked immunosorbent assay (ELISA), a 10-7G mAb was identified as being highly specific for Fuc-Hpt generated in a cell line as well as for Hpt derived from a pancreatic cancer patient. As a result from affinity chromatography with 10-7G mAb, followed by lectin blot and mass spectrometry analyses, it was found that 10-7G mAb predominantly recognized both Fuc-Hpt and prohaptoglobin (proHpt), which was also fucosylated. In immunohistochemical analyses, hepatocytes surrounding metastasized cancer cells were stained by the 10-7G mAb, but neither the original cancer cells themselves nor normal hepatocytes exhibited positive staining, suggesting that metastasized cancer cells promote Fuc-Hpt production in adjacent hepatocytes. Serum level of Fuc-Hpt determined with newly developed ELISA system using the 10-7G mAb, was increased in patients of pancreatic and colorectal cancer. Interestingly, dramatic increases in Fuc-Hpt levels were observed at the stage IV of colorectal cancer. These results indicate that the 10-7G mAb developed is a promising antibody which recognizes Fuc-Hpt and could be a useful diagnostic tool for detecting liver metastasis of cancer.This study was performed as a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct), Ministry of Education, Culture, Sports, Science and Technology of Japan and was supported by JSPS KAKENHI Grant Number JP16H05226

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar
    corecore