171 research outputs found

    Professor Charles C. Fries *

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98137/1/j.1467-1770.1987.tb00384.x.pd

    Linguistic Factors Affecting Moraic Duration in Spontaneous Japanese

    Get PDF
    Japanese is often referred to as a mora-timed language (Ladefoged 1975): the mora has been described as the psychological prosodic unit in the spoken language, and it is the metric unit of traditional poetry (Bloch 1950). However, it is clear that mo- rae are not strictly isochronous units (Beckman 1982). Thus, experimental studies have focused on detecting compensation effects that make average mora durations more equal through the modulation of the inherent duration of the segments involved (Han 1962; Port, Al-Ani, Maeda 1980; Homma 1981; Hoequist 1983a; 1983b; Warner, Arai 2001). Kawahara (2017) used the Corpus of Spontaneous Japanese to verify whether the dura- tional compensation effect within a /CV/ mora occurs in natural speech, in addition to read speech in the lab. He observed a statistically significant compensation effect of /CV/ morae, in which vowel duration tends to vary in response to the duration of the preced- ing consonant. However, as the same author has pointed out, the compensation is not absolute because there are several linguistic factors that potentially affect segments’ duration profiles. This study will support the idea that moraic isochrony does not occur in spontaneous Japanese by presenting empirical data on how linguistic factors can considerably affect variation in the average duration of morae

    The Polarization of Ambient Noise on Mars

    Get PDF
    Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the InSight seismometers. This noise can reach −200 dB. It is 500 times lower than on Earth at night and it increases of 30 dB during the day. We analyze its polarization as a function of time and frequency in the band 0.03–1 Hz. We use the degree of polarization to extract signals with stable polarization independent of their amplitude and type of polarization. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane below 0.3 Hz. In the 0.3-1Hz high frequency band (HF) and except in the evening, the ellipse is in the vertical plane and the major axis is tilted. While polarization azimuths are different in the two frequency bands, they both vary as a function of local hour and season. They are also correlated with wind direction, particularly during the daytime. We investigate possible aseismic and seismic origins of the polarized signals. Lander or tether noise can be discarded. Pressure fluctuations transported by wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission coming from high altitude at critical angle. Finally, in the evening when the wind is low, the measured polarized signals may correspond to the seismic wavefield of the Mars background noise

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore