1,222 research outputs found
From one cell to the whole froth: a dynamical map
We investigate two and three-dimensional shell-structured-inflatable froths,
which can be constructed by a recursion procedure adding successive layers of
cells around a germ cell. We prove that any froth can be reduced into a system
of concentric shells. There is only a restricted set of local configurations
for which the recursive inflation transformation is not applicable. These
configurations are inclusions between successive layers and can be treated as
vertices and edges decorations of a shell-structure-inflatable skeleton. The
recursion procedure is described by a logistic map, which provides a natural
classification into Euclidean, hyperbolic and elliptic froths. Froths tiling
manifolds with different curvature can be classified simply by distinguishing
between those with a bounded or unbounded number of elements per shell, without
any a-priori knowledge on their curvature. A new result, associated with
maximal orientational entropy, is obtained on topological properties of natural
cellular systems. The topological characteristics of all experimentally known
tetrahedrally close-packed structures are retrieved.Comment: 20 Pages Tex, 11 Postscript figures, 1 Postscript tabl
The SAMI Galaxy Survey: Gas Streaming and Dynamical M/L in Rotationally Supported Systems
Line-of-sight velocities of gas and stars can constrain dark matter (DM)
within rotationally supported galaxies if they trace circular orbits
extensively. Photometric asymmetries may signify non-circular motions,
requiring spectra with dense spatial coverage. Our integral-field spectroscopy
of 178 galaxies spanned the mass range of the SAMI Galaxy Survey. We derived
circular speed curves (CSCs) of gas and stars from non-parametric Diskfit fits
out to . For 12/14 with measured H I profiles, ionized gas and H I
maximum velocities agreed. We fitted mass-follows-light models to 163 galaxies
by approximating the radial starlight profile as nested, very flattened mass
homeoids viewed as a S\'ersic form. Fitting broad-band SEDs to SDSS images gave
median stellar mass/light 1.7 assuming a Kroupa IMF vs. 2.6 dynamically.
Two-thirds of the dynamical mass/light measures were consistent with
star+remnant IMFs. One-fifth required upscaled starlight to fit, hence
comparable mass of unobserved baryons and/or DM distributed similarly across
the SAMI aperture that came to dominate motions as the starlight CSC declined
rapidly. The rest had mass distributed differently from starlight. Subtracting
fits of S\'ersic profiles to 13 VIKING Z-band images revealed residual weak
bars. Near the bar PA, we assessed m = 2 streaming velocities, and found
deviations usually <30 km/s from the CSC; three showed no deviation. Thus,
asymmetries rarely influenced our CSCs despite co-located shock-indicating,
emission-line flux ratios in more than 2/3.Comment: 21 pages, 15 figures. Accepted to MNRA
Abundance of unknots in various models of polymer loops
A veritable zoo of different knots is seen in the ensemble of looped polymer
chains, whether created computationally or observed in vitro. At short loop
lengths, the spectrum of knots is dominated by the trivial knot (unknot). The
fractional abundance of this topological state in the ensemble of all
conformations of the loop of segments follows a decaying exponential form,
, where marks the crossover from a mostly unknotted
(ie topologically simple) to a mostly knotted (ie topologically complex)
ensemble. In the present work we use computational simulation to look closer
into the variation of for a variety of polymer models. Among models
examined, is smallest (about 240) for the model with all segments of the
same length, it is somewhat larger (305) for Gaussian distributed segments, and
can be very large (up to many thousands) when the segment length distribution
has a fat power law tail.Comment: 13 pages, 6 color figure
Quantized vortices and superflow in arbitrary dimensions: Structure, energetics and dynamics
The structure and energetics of superflow around quantized vortices, and the
motion inherited by these vortices from this superflow, are explored in the
general setting of the superfluidity of helium-four in arbitrary dimensions.
The vortices may be idealized as objects of co-dimension two, such as
one-dimensional loops and two-dimensional closed surfaces, respectively, in the
cases of three- and four-dimensional superfluidity. By using the analogy
between vorticial superflow and Ampere-Maxwell magnetostatics, the equilibrium
superflow containing any specified collection of vortices is constructed. The
energy of the superflow is found to take on a simple form for vortices that are
smooth and asymptotically large, compared with the vortex core size. The motion
of vortices is analyzed in general, as well as for the special cases of
hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions,
vortex motion reflects vortex geometry. In dimension four and higher, this
includes not only extrinsic but also intrinsic aspects of the vortex shape,
which enter via the first and second fundamental forms of classical geometry.
For hyper-spherical vortices, which generalize the vortex rings of three
dimensional superfluidity, the energy-momentum relation is determined. Simple
scaling arguments recover the essential features of these results, up to
numerical and logarithmic factors.Comment: 35 pages, 7 figure
Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 m to 1 mm
We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 × 105 (Mpc h−1)3. The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5 per cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 μm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) × 1035 h W Mpc−3 of which (1.2 ± 0.1) × 1035 h W Mpc−3 is directly released into the inter-galactic medium and (0.6 ± 0.1) × 1035 h W Mpc−3 is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1 μm to 0.6 mm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology
Galaxy And Mass Assembly (GAMA) : galaxy close pairs, mergers and the future fate of stellar mass
ASGR acknowledges STFC and SUPA funding that were used to do this work. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the participating institutions.We use a highly complete subset of the Galaxy And Mass Assembly II (GAMA-II) redshift sample to fully describe the stellar mass dependence of close pairs and mergers between 10(8) and 10(12)M(circle dot). Using the analytic form of this fit we investigate the total stellar mass accreting on to more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging on to more massive companions is 2.0-5.6 per cent. Using the GAMA-II data we see no significant evidence for a change in the close pair fraction between redshift z = 0.05 and 0.2. However, we find a systematically higher fraction of galaxies in similar mass close pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function gamma(M) = A(1 + z)(m) to predict the major close pair fraction, we find fitting parameters of A = 0.021 +/- 0.001 and m = 1.53 +/- 0.08, which represents a higher low-redshift normalization and shallower power-law slope than recent literature values. We find that the relative importance of in situ star formation versus galaxy merging is inversely correlated, with star formation dominating the addition of stellar material below M* and merger accretion events dominating beyond M*. We find mergers have a measurable impact on the whole extent of the galaxy stellar mass function (GSMF), manifest as a deepening of the 'dip' in the GSMF over the next similar to Gyr and an increase in M* by as much as 0.01-0.05 dex.Publisher PDFPeer reviewe
GAMA: towards a physical understanding of galaxy formation
The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of
large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian
Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic
structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2,
and to trace the distribution of luminous galaxies out to z~0.5. The principal
science aim is to test the standard hierarchical structure formation paradigm
of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and
bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from
galaxy group velocity dispersions); (2) baryonic processes, such as star
formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass
Functions); and (3) the evolution of galaxy merger rates (via galaxy close
pairs and galaxy asymmetries). Additionally, GAMA will form the central part of
a new galaxy database, which aims to contain 275,000 galaxies with
multi-wavelength coverage from coordinated observations with the latest
international ground- and space-based facilities: GALEX, VST, VISTA, WISE,
HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth
(over 2 magnitudes), doubled spatial resolution (0.7"), and significantly
extended wavelength coverage (UV through Far-IR to radio) over the main SDSS
spectroscopic survey for five regions, each of around 50 deg^2. This database
will permit detailed investigations of the structural, chemical, and dynamical
properties of all galaxy types, across all environments, and over a 5 billion
year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy &
Geophysics, ref: Astron.Geophys. 50 (2009) 5.1
Intellectual property management and technological entrepreneurship
This paper investigates the distinctive technology protection strategies of entrepreneurial technology firms. In contrast with much popular opinion, it is reported that intellectual property features more prominently in the business of small entrepreneurial firms than it does in the business of large, established mature firms. The intellectual property portfolios of technology firms of all sizes and ages exhibit a rich array of instruments in addition to patents for protecting technology, including trade secrets, trademarks and copyright, together with licenses to externally sourced technology. The intellectual property profiles of technology firms appear to be influenced by their context, organizational profiles and corporate goals and by the character of their technology
The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength
We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early
Release Science (ERS) observations in the Great Observatories Origins Deep
Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled
mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR
filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter.
Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South
mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50
square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and
0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma})
for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies.
In this paper, we describe: a) the scientific rationale, and the data taking
plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the
procedure of generating object catalogs across the 10 different ERS filters,
and the specific star-galaxy separation techniques used; and c) the reliability
and completeness of the object catalogs from the WFC3 ERS mosaics. The
excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy
separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26
mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2
Neural Substrates for the Motivational Regulation of Motor Recovery after Spinal-Cord Injury
It is believed that depression impedes and motivation enhances functional recovery after neuronal damage such as spinal-cord injury and stroke. However, the neuronal substrate underlying such psychological effects on functional recovery remains unclear. A longitudinal study of brain activation in the non-human primate model of partial spinal-cord injury using positron emission tomography (PET) revealed a contribution of the primary motor cortex (M1) to the recovery of finger dexterity through the rehabilitative training. Here, we show that activity of the ventral striatum, including the nucleus accumbens (NAc), which plays a critical role in processing of motivation, increased and its functional connectivity with M1 emerged and was progressively strengthened during the recovery. In addition, functional connectivities among M1, the ventral striatum and other structures belonging to neural circuits for processing motivation, such as the orbitofrontal cortex, anterior cingulate cortex and pedunculopontine tegmental nucleus were also strengthened during the recovery. These results give clues to the neuronal substrate for motivational regulation of motor learning required for functional recovery after spinal-cord injury
- …