19 research outputs found

    OP0291 TOFACITINIB FOR THE TREATMENT OF POLYARTICULAR COURSE JUVENILE IDIOPATHIC ARTHRITIS: RESULTS OF A PHASE 3, RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED WITHDRAWAL STUDY

    Get PDF
    Background:Tofacitinib is an oral JAK inhibitor that is being investigated for JIA.Objectives:To assess tofacitinib efficacy and safety in JIA patients (pts).Methods:This was a Phase 3, randomised, double-blind (DB), placebo (PBO)-controlled withdrawal study in pts aged 2−<18 years with polyarticular course JIA (pcJIA), PsA or ERA (NCT02592434). In the 18-week open-label Part 1, pts received weight-based tofacitinib doses (5 mg BID or lower). Pts with ≥JIA ACR30 response at Week (W)18 were randomised 1:1 in the DB Part 2 (W18−44) to continue tofacitinib or switch to PBO. Primary endpoint: disease flare rate by W44. Key secondary endpoints: JIA ACR50/30/70 response rates; change from Part 2 baseline (Δ) in CHAQ-DI at W44. Other efficacy endpoints: time to disease flare in Part 2; JADAS27-CRP in Parts 1 and 2. PsA/ERA pts were excluded from these efficacy analyses. Safety was evaluated in all pts up to W44.Results:225 enrolled pts with pcJIA (n=184), PsA (n=20) or ERA (n=21) received tofacitinib in Part 1. At W18, 173/225 (76.9%) pts entered Part 2 (pcJIA n=142, PsA n=15, ERA n=16). In pcJIA pts, disease flare rate in Part 2 was significantly lower with tofacitinib vs PBO by W44 (p=0.0031; Fig 1a). JIA ACR50/30/70 response rates (Fig 1b) and ΔCHAQ-DI (Fig 1c) at W44, and time to disease flare in Part 2 (Fig 2a), were improved with tofacitinib vs PBO. Tofacitinib reduced JADAS27-CRP in Part 1; this effect was sustained in Part 2 (Fig 2b). Overall, safety was similar with tofacitinib or PBO (Table): 77.3% and 74.1% had adverse events (AEs); 1.1% and 2.4% had serious AEs. In Part 1, 2 pts had herpes zoster (non-serious) and 3 pts had serious infections (SIs). In Part 2, SIs occurred in 1 tofacitinib pt and 1 PBO pt. No pts died.Conclusion:In pcJIA pts, tofacitinib vs PBO resulted in significantly fewer disease flares, and improved time to flare, disease activity and physical functioning. Tofacitinib safety was consistent with that in RA pts.Table.Safety in all ptsPart 1Part 2TofacitinibaN=225TofacitinibaN=88PBO N=85Pts with events, n (%)AEs153 (68.0)68 (77.3)63 (74.1)SAEs7 (3.1)1 (1.1)2 (2.4)Permanent discontinuations due to AEs26 (11.6)16 (18.2)29 (34.1)AEs of special interest Death000 Gastrointestinal perforationb000 Hepatic eventb3 (1.3)00 Herpes zoster (non-serious and serious)2 (0.9)c00 Interstitial lung diseaseb000 Major adverse cardiovascular eventsb000 Malignancy (including non-melanoma skin cancer)b000 Macrophage activation syndromeb000 Opportunistic infectionb000 SI3 (1.3)1 (1.1)d1 (1.2) Thrombotic event (deep vein thrombosis, pulmonary embolismbor arterial thromboembolism)000 Tuberculosisb000a5 mg BID or equivalent weight-based lower dose in pts <40 kgbAdjudicated eventscBoth non-seriousdOne SAE of pilonidal cyst repair was coded to surgical procedures instead of infections, and was inadvertently not identified as an SI. Following adjudication, the SAE did not meet opportunistic infection criteria; it is also included in the table as an SIAE, adverse event; BID, twice daily; PBO, placebo; pts, patients; SAE, serious AE; SI, serious infectionAcknowledgments:Study sponsored by Pfizer Inc. Medical writing support was provided by Sarah Piggott of CMC Connect and funded by Pfizer Inc.Disclosure of Interests:Nicolino Ruperto Grant/research support from: Bristol-Myers Squibb, Eli Lily, F Hoffmann-La Roche, GlaxoSmithKline, Janssen, Novartis, Pfizer, Sobi (paid to institution), Consultant of: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Speakers bureau: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Olga Synoverska Speakers bureau: Sanofi, Tracy Ting: None declared, Carlos Abud-Mendoza Speakers bureau: Eli Lilly, Pfizer Inc, Alberto Spindler Speakers bureau: Eli Lilly, Yulia Vyzhga Grant/research support from: Pfizer Inc, Katherine Marzan Grant/research support from: Novartis, Vladimir Keltsev: None declared, Irit Tirosh: None declared, Lisa Imundo: None declared, Rita Jerath: None declared, Daniel Kingsbury: None declared, Betül Sözeri: None declared, Sheetal Vora: None declared, Sampath Prahalad Grant/research support from: Novartis, Elena Zholobova Grant/research support from: Novartis and Pfizer Inc, Speakers bureau: AbbVie, Novartis, Pfizer Inc and Roche, Yonatan Butbul Aviel: None declared, Vyacheslav Chasnyk: None declared, Melissa Lerman Grant/research support from: Amgen, Kabita Nanda Grant/research support from: Abbott, AbbVie, Amgen and Roche, Heinrike Schmeling Grant/research support from: Janssen, Pfizer Inc, Roche and USB Bioscience, Heather Tory: None declared, Yosef Uziel Speakers bureau: Pfizer Inc, Diego O Viola Grant/research support from: Bristol-Myers Squibb, GSK, Janssen and Pfizer Inc, Speakers bureau: AbbVie and Bristol-Myers Squibb, Holly Posner Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Keith Kanik Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ann Wouters Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Cheng Chang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Richard Zhang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Irina Lazariciu Consultant of: Pfizer Inc, Employee of: IQVIA, Ming-Ann Hsu Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ricardo Suehiro Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Alberto Martini Consultant of: AbbVie, Eli Lily, EMD Serono, Janssen, Novartis, Pfizer, UCB, Daniel J Lovell Consultant of: Abbott (consulting and PI), AbbVie (PI), Amgen (consultant and DSMC Chairperson), AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb (PI), Celgene, Forest Research (DSMB Chairman), GlaxoSmithKline, Hoffman-La Roche, Janssen (co-PI), Novartis (consultant and PI), Pfizer (consultant and PI), Roche (PI), Takeda, UBC (consultant and PI), Wyeth, Employee of: Cincinnati Children's Hospital Medical Center, Speakers bureau: Wyeth, Hermine Brunner Consultant of: Hoffman-La Roche, Novartis, Pfizer, Sanofi Aventis, Merck Serono, AbbVie, Amgen, Alter, AstraZeneca, Baxalta Biosimilars, Biogen Idec, Boehringer, Bristol-Myers Squibb, Celgene, EMD Serono, Janssen, MedImmune, Novartis, Pfizer, and UCB Biosciences, Speakers bureau: GSK, Roche, and Novarti

    Opportunistic infections in immunosuppressed patients with juvenile idiopathic arthritis: analysis by the Pharmachild Safety Adjudication Committee

    Get PDF
    Background To derive a list of opportunistic infections (OI) through the analysis of the juvenile idiopathic arthritis (JIA) patients in the Pharmachild registry by an independent Safety Adjudication Committee (SAC). Methods The SAC (3 pediatric rheumatologists and 2 pediatric infectious disease specialists) elaborated and approved by consensus a provisional list of OI for use in JIA. Through a 5 step-procedure, all the severe and serious infections, classified as per MedDRA dictionary and retrieved in the Pharmachild registry, were evaluated by the SAC by answering six questions and adjudicated with the agreement of 3/5 specialists. A final evidence-based list of OI resulted by matching the adjudicated infections with the provisional list of OI. Results A total of 772 infectious events in 572 eligible patients, of which 335 serious/severe/very severe non-OI and 437 OI (any intensity/severity), according to the provisional list, were retrieved. Six hundred eighty-two of 772 (88.3%) were adjudicated as infections, of them 603/682 (88.4%) as common and 119/682 (17.4%) as OI by the SAC. Matching these 119 opportunistic events with the provisional list, 106 were confirmed by the SAC as OI, and among them infections by herpes viruses were the most frequent (68%), followed by tuberculosis (27.4%). The remaining events were divided in the groups of non-OI and possible/patient and/or pathogen-related OI. Conclusions We found a significant number of OI in JIA patients on immunosuppressive therapy. The proposed list of OI, created by consensus and validated in the Pharmachild cohort, could facilitate comparison among future pharmacovigilance studies

    Subcutaneous abatacept in patients with polyarticular-course juvenile idiopathic arthritis : results from a phase III open-label study

    Get PDF
    OBJECTIVE : To investigate the pharmacokinetics, effectiveness, and safety of subcutaneous (SC) abatacept treatment over 24 months in patients with polyarticular‐course juvenile idiopathic arthritis (JIA). METHODS: In this phase III, open‐label, international, multicenter, single‐arm study, patients with polyarticular JIA (cohort 1, ages 6–17 years and cohort 2, ages 2–5 years) in whom treatment with ≥1 disease‐modifying antirheumatic drug was unsuccessful received weight‐tiered SC abatacept weekly: 10 to <25 kg (50 mg), 25 to <50 kg (87.5 mg), ≥50 kg (125 mg). Patients who had met the JIA–American College of Rheumatology 30% improvement criteria (achieved a JIA‐ACR 30 response) at month 4 were given the option to continue SC abatacept to month 24. The primary end point was the abatacept steady‐state serum trough concentration (Cminss) in cohort 1 at month 4. Other outcome measures included JIA‐ACR 30, 50, 70, 90, 100, and inactive disease status, the median Juvenile Arthritis Disease Activity Score in 71 joints using the C‐reactive protein level (JADAS‐71–CRP) over time, safety, and immunogenicity. RESULTS : The median abatacept Cminss at month 4 (primary end point) and at month 24 was above the target therapeutic exposure (10 μg/ml) in both cohorts. The percentage of patients who had achieved JIA‐ACR 30, 50, 70, 90, or 100 responses or had inactive disease responses at month 4 (intent‐to‐treat population) was 83.2%, 72.8%, 52.6%, 28.3%, 14.5%, and 30.1%, respectively, in cohort 1 (n = 173) and 89.1%, 84.8%, 73.9%, 58.7%, 41.3%, and 50.0%, respectively, in cohort 2 (n = 46); the responses were maintained to month 24. The median (interquartile range) JADAS‐71–CRP improved from baseline to month 4: cohort 1, from 21.0 (13.5, 30.3) to 4.6 (2.1, 9.4); cohort 2, from 18.1 (14.0, 23.1) to 2.1 (0.3, 4.4). Improvements were sustained to month 24, at which time 27 of 173 patients (cohort 1) and 11 of 22 patients (cohort 2) had achieved JADAS‐71–CRP remission. No unexpected adverse events were reported; 4 of 172 patients (2.3%) in cohort 1 and 4 of 46 (8.7%) in cohort 2 developed anti‐abatacept antibodies, with no clinical effects. CONCLUSION : Weight‐stratified SC abatacept yielded target therapeutic exposures across age and weight groups, was well tolerated, and improved polyarticular JIA symptoms over 24 months.Results From a Phase III Open‐Label StudyWriting assistance was funded by Bristol‐Myers Squibb.https://onlinelibrary.wiley.com/journal/23265205am2018Internal Medicin

    Clinical and immunological aspects and treatment of juvenile systemic sclerosis

    No full text
    Цель. На основании изучения иммунного статуса и цитокинового профиля разработать систему ранней диагностики и лечения больных ЮСД. Материал и методы. За период 2000 по 2003 гг наблюдались 70 детей, больных ЮСД (32 мальчика и 38 девочек), в возрасте от 12до 17 лет. Исследовалось содержание Т- и В-лимфоцитов, CD4, CD8, CD 16, CD20, CD95, соотношение CD4/CD8 (иммунно-регуляторный индекс), иммуноглобулинов G,A,M (IgA, IgM, IgG), циркулирующих иммунных комплексов (ЦИК), РФ, интерферона-у (ИФ-у), интерлейкинов-4,8 (ИЛ-4, ИЛ- 8),ФНО-а в сыворотке крови при поступлении больных и через 6 мес после выписки из стационара. Результаты. Иммунные реакции зависели от клинической формы ЮСД, связанной с полом больных детей. При длительности заболевания более года уровни CD4, CD95, ФНО-а, ИЛ-4 и ИФ-у были высокими, свидетельствуя о прогрессировании процесса и являясь показателем активности. Сравнительный анализ двух базисных препаратов - делагила и ауранофина показал, что последний положительно влияет не только на клиническую картину ЮСД, но и на иммунологические параметры. Заключение. Пик заболеваемости обследованных больных ЮСД приходился на пубертатный период. Для девочек более характерной была бляшечная, для мальчиков - линейная форма. Различные формы ЮСД имели общие иммунологические механизмы. Соли золота (ауранофин) в качестве базисного препарата положительно влияли не только клиническую картину заболевания, но и на динамику иммунологических показателей ЮСД

    PRIMENENIE ABATATsEPTA U DETEI-BLIZNETsOV, BOL''NYKh YuVENIL''NYM IDIOPATIChESKIM ARTRITOM

    No full text
    Analiz predstavlennogo klinicheskogo sluchaya pokazal vysokuyu effektivnost' abatatsepta u bol'nykh-bliznetsov YuIA s tyazhelym poliartikulyarnym porazheniem sustavov

    Early arthritis in children and adolescents — immune status of patients and perspectives of treatment

    No full text
    Objective. To study state of immune status in children and adolescents with juvenile idiopathic arthritis (JIA) at early stages of the disease development and perspectives of their treatment. Materials and methods. 286 children and adolescents with olygo- and polyarticular variants of JIA aged 3 to 18 years were included. Examination of CD4, CD8, CD16, CD95 lymphocyte markers, IgA, IgG, IgM rheumatoid factor, interleukin 1(3, 4, 6, 8, 10, tumor necrosis factor a as well as lymphocyte morphometry was performed. Results. High blood levels of CD4, CD8, CD 16, CD95, pro- and anti- inflammatory interleukins were revealed at active stage of JIA particularly in pts with polyarthritis and extended olygoarthritis. Changes of mean lymphocyte morphometric measures linearly inversely correlated with relative lymphocyte markers level what proves relationship of processes of proliferation, cytotoxicity and elevation of circulating apoptotic cell count in blood. However increase of “programmed death cells" may reflect not only proliferation but also capability of cells to induce cell death program in presence of provocative factors. In pts with very high humoral level of lymphocyte markers and cytokines appropriate therapy more often induces clinico-laboratory remission than in pts with lower values. Conclusion. Immune and cytokine status in children and adolescents with JIA determines evolution of arthritis. Early administration of disease modifying drugs more often induces of clinico-laboratory remission in pts with high levels of lymphocyte markers and antiinflammatory cytokines
    corecore