73 research outputs found

    Comparing Community Structure to Characteristics in Online Collegiate Social Networks

    Get PDF
    We study the structure of social networks of students by examining the graphs of Facebook "friendships" at five American universities at a single point in time. We investigate each single-institution network's community structure and employ graphical and quantitative tools, including standardized pair-counting methods, to measure the correlations between the network communities and a set of self-identified user characteristics (residence, class year, major, and high school). We review the basic properties and statistics of the pair-counting indices employed and recall, in simplified notation, a useful analytical formula for the z-score of the Rand coefficient. Our study illustrates how to examine different instances of social networks constructed in similar environments, emphasizes the array of social forces that combine to form "communities," and leads to comparative observations about online social lives that can be used to infer comparisons about offline social structures. In our illustration of this methodology, we calculate the relative contributions of different characteristics to the community structure of individual universities and subsequently compare these relative contributions at different universities, measuring for example the importance of common high school affiliation to large state universities and the varying degrees of influence common major can have on the social structure at different universities. The heterogeneity of communities that we observe indicates that these networks typically have multiple organizing factors rather than a single dominant one.Comment: Version 3 (17 pages, 5 multi-part figures), accepted in SIAM Revie

    Spatiotemporal microbial evolution on antibiotic landscapes

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in thisA key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)-plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front.While resistance increased consistently, multiple coexisting lineages diversified both phenotypically and genotypically. Analyzing mutants at and behind the propagating front,we found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behindmore sensitive lineages.TheMEGA-plate provides a versatile platformfor studying microbial adaption and directly visualizing evolutionary dynamics.National Defense Science and Engineering Graduate fellowshipNIHEuropean Union FP

    Nutrient levels and trade-offs control diversity in a serial dilution ecosystem

    Full text link
    Microbial communities feature an immense diversity of species and this diversity is linked with outcomes ranging from ecosystem stability to medical prognoses. Yet the mechanisms underlying microbial diversity are under debate. While simple resource-competition models don't allow for coexistence of a large number of species, it was recently shown that metabolic trade-offs can allow unlimited diversity. Does this diversity persist with more realistic, intermittent nutrient supply? Here, we demonstrate theoretically that in serial dilution culture, metabolic trade-offs allow for high diversity. When a small amount of nutrient is supplied to each batch, the serial dilution dynamics mimic a chemostat-like steady state. If more nutrient is supplied, diversity depends on the amount of nutrient supplied due to an "early-bird" effect. The interplay of this effect with different environmental factors and diversity-supporting mechanisms leads to a variety of relationships between nutrient supply and diversity, suggesting that real ecosystems may not obey a universal nutrient-diversity relationship.Comment: Appendix follows main tex

    Operon mRNAs are organized into ORF-centric structures that predict translation efficiency

    Get PDF
    Bacterial mRNAs are organized into operons consisting of discrete open reading frames (ORFs) in a single polycistronic mRNA. Individual ORFs on the mRNA are differentially translated, with rates varying as much as 100-fold. The signals controlling differential translation are poorly understood. Our genome-wide mRNA secondary structure analysis indicated that operonic mRNAs are comprised of ORF-wide units of secondary structure that vary across ORF boundaries such that adjacent ORFs on the same mRNA molecule are structurally distinct. ORF translation rate is strongly correlated with its mRNA structure in vivo, and correlation persists, albeit in a reduced form, with its structure when translation is inhibited and with that of in vitro refolded mRNA. These data suggest that intrinsic ORF mRNA structure encodes a rough blueprint for translation efficiency. This structure is then amplified by translation, in a self-reinforcing loop, to provide the structure that ultimately specifies the translation of each ORF

    Deep diversification of an AAV capsid protein by machine learning.

    Get PDF
    Modern experimental technologies can assay large numbers of biological sequences, but engineered protein libraries rarely exceed the sequence diversity of natural protein families. Machine learning (ML) models trained directly on experimental data without biophysical modeling provide one route to accessing the full potential diversity of engineered proteins. Here we apply deep learning to design highly diverse adeno-associated virus 2 (AAV2) capsid protein variants that remain viable for packaging of a DNA payload. Focusing on a 28-amino acid segment, we generated 201,426 variants of the AAV2 wild-type (WT) sequence yielding 110,689 viable engineered capsids, 57,348 of which surpass the average diversity of natural AAV serotype sequences, with 12-29 mutations across this region. Even when trained on limited data, deep neural network models accurately predict capsid viability across diverse variants. This approach unlocks vast areas of functional but previously unreachable sequence space, with many potential applications for the generation of improved viral vectors and protein therapeutics

    Diversity, stability, and evolvability in models of early evolution

    Get PDF
    Based on the RNA world hypothesis, we outline a possible evolutionary route from infrabiological systems to early protocells. To assess the scientific merits of the different models of prebiotic evolution and to suggest directions for future research, we investigate the diversity-maintaining ability, evolutionary/ecological stability, and evolvability criteria of existing RNA world model systems for the origin of life. We conclude that neither of the studied systems satisfies all of the aforementioned criteria, although some of them are more convincing than the others. Furthermore, we found that the most conspicuous features of the proposed prebiotic evolutionary scenarios are their increasing spatial inhomogeneity along with increasing plasticity, evolvability, and functional diversity. All of these characteristics change abruptly with the emergence of the protocells

    Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance

    Get PDF
    Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology
    • 

    corecore