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Abstract Bacterial mRNAs are organized into operons consisting of discrete open reading

frames (ORFs) in a single polycistronic mRNA. Individual ORFs on the mRNA are differentially

translated, with rates varying as much as 100-fold. The signals controlling differential translation are

poorly understood. Our genome-wide mRNA secondary structure analysis indicated that operonic

mRNAs are comprised of ORF-wide units of secondary structure that vary across ORF boundaries

such that adjacent ORFs on the same mRNA molecule are structurally distinct. ORF translation rate

is strongly correlated with its mRNA structure in vivo, and correlation persists, albeit in a reduced

form, with its structure when translation is inhibited and with that of in vitro refolded mRNA. These

data suggest that intrinsic ORF mRNA structure encodes a rough blueprint for translation

efficiency. This structure is then amplified by translation, in a self-reinforcing loop, to provide the

structure that ultimately specifies the translation of each ORF.

DOI: 10.7554/eLife.22037.001

Introduction
Protein synthesis is the most energetically costly process in bacteria, consuming up to 50% of cellular

energy. Thus, to optimize cellular efficiency, the rate of synthesis of each protein must be carefully

controlled. In bacteria, operons are central to this process. Open reading frames (ORFs) with related

functions are organized into operons that are transcribed as a single mRNA ensuring that operonic

genes are transcriptionally co-regulated in response to various conditions (Jacob and Monod,

1961). Additionally, the translation of each ORF in the operon is precisely tuned to cellular need.

Indeed, the rate of protein production (i.e. the translation efficiency) of adjacent ORFs on a single

mRNA can vary by as much as 100-fold, and members of protein complexes encoded on a single

mRNA are generally translated in proportion to their stoichiometry (Li et al., 2014). Understanding

how the cell achieves optimal energy utilization critically depends on understanding how mRNA

sequence features reliably drive ORF-specific translation.

A number of mRNA features have been identified as contributing to the rate of translation of an

ORF. Both the strength and accessibility of a Shine-Dalgarno (SD) sequence upstream from the initia-

tion codon (Steitz and Jakes, 1975) have been implicated in translatability. In support of the
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importance of SD accessibility, highly stable mRNA structures in direct proximity to the initiation

codon diminish translatability (de Smit and van Duin, 1990; Hall et al., 1982; Lodish, 1970) and

rare codons that disfavor RNA structure are enriched in positions immediately following the transla-

tion start site (Bentele et al., 2013; Eyre-Walker and Bulmer, 1993; Scharff et al., 2011). More-

over, several studies examining either synthetic ORFs with a few bases difference (e.g. alterations to

GFP), or fluorescent reporter assays studying the effect of multiple codon changes in the 5’ UTR and

N-terminal coding sequences, find that models based on their predicted RNA structure at the trans-

lation start site are relatively successful at predicting their differences in translatability

(Goodman et al., 2013; Kudla et al., 2009). Most recently, codon usage has emerged as an impor-

tant variable for translation. A large study examining thousands of foreign ORFs concluded that

except for the very initial nucleotides of the ORF, codon usage rather than mRNA folding propensity

was the critical determinant for translatability (Boël et al., 2016).

While these mRNA features are of clear value for predicting the translatability of exogenously

expressed ORFs, several considerations suggest that they may not capture the key features that

have evolved to set the translation efficiency of endogenous genes. First, all the high-throughput

studies overexpressed the mRNAs they studied, which is known to perturb the charged tRNA pool

and introduce biases in codon usage (Dittmar et al., 2005; Elf et al., 2003). Second, in the Boel

et al. manuscript and in other studies, mRNAs were transcribed by T7 RNA polymerase, which not

only elongates significantly faster than E. coli RNA polymerase but also removes the influence of the

many endogenous E. coli RNA polymerase binding proteins that modulate its elongation rate.

Where examined, such RNAs exhibit altered folding patterns (Lewicki et al., 1993; Chao et al.,

1995; Pan et al., 1999). Thus, these transcripts likely have non-native structure. Third, these studies

all used foreign mRNAs, which had not been subjected to evolution for precise tuning in E. coli.

eLife digest Proteins make up much of the biological machinery inside cells and perform the

essential tasks needed to keep each cell alive. Cells contain thousands of different proteins and the

instructions needed to build each protein are encoded in genes. However, these instructions cannot

be used directly to manufacture the proteins. Instead, a messenger molecule called mRNA is

needed to carry the information stored within genes to the parts of the cell where proteins are

made.

In bacteria, one mRNA molecule can include information from several genes. This group of genes

is called an operon and produces a set of proteins that perform a shared task. Although these

proteins work together, some of them are needed in greater numbers than others. Because they are

all made using information from the same mRNA, some instructions on the mRNA must be read

more times than others. It is unclear how bacterial cells control how many proteins are produced

from each part of one mRNA but it is thought to relate to the three-dimensional shape of the

molecule itself.

Burkhardt, Rouskin, Zhang et al. have now examined the production of proteins from mRNAs in

the commonly studied bacterium, Escherichia coli. The results showed that each set of instructions

on the mRNA formed a three-dimensional structure that corresponds to the amount of protein

produced from that portion of the mRNA. When this three-dimensional structure is more stable or

rigid, the corresponding instructions tended to produce fewer proteins than if the structure was

relatively simple and unstable.

Further investigation showed that these three-dimensional mRNA structures could form

spontaneously outside of cells, suggesting that molecules other than the mRNA itself have a

relatively small role in controlling the number of proteins produced. This also suggests that the

entire structure of each mRNA is important and is likely to be essential for cell survival. The next

step is to understand why bacteria organise their genes in this way and how the different mRNA

structures control how proteins are produced. Moreover, because many bacteria are used like

biological factories to produce a variety of commercially useful molecules, these new insights have

the potential to enhance a number of manufacturing processes.

DOI: 10.7554/eLife.22037.002
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Finally, these studies primarily measured protein abundance, a quantity that is dependent on mRNA

and protein stability as well as on the efficiency at which each ORF is translated.

The goal of this work is to understand how E. coli establishes the relative expression of adjacent

ORFs on the same mRNA. To accomplish this, we systematically assessed the translational efficiency

(TE) of every ORF mRNA and then examined which of its features (e.g. secondary structure, codon

usage, and the strength of ribosome binding site) correlated with its translatability. The translation

efficiency of endogenous messages in E. coli could be probed with existing global technologies

(Li et al., 2014; Oh et al., 2011; Ingolia et al., 2009) and the effects of codon usage with two met-

rics, tAI (tRNA adaptation index) (Tuller et al., 2010; dos Reis et al., 2004) and codon influence

(Boël et al., 2016). However, in vivo mRNA structure has not previously been empirically evaluated

at the global level in E. coli. We therefore adapted the dimethyl sulfate (DMS)-seq technique

(Rouskin et al., 2014), which uses next-generation sequencing to determine chemical accessibility of

RNA to DMS, to E. coli. Our studies point to a critical role of intrinsic ORF-wide differences in mRNA

structure in allowing differential translation of ORFs sharing the same operonic mRNAs.

Results

Development of global RNA secondary structure determination in
E. coli
New genomic technologies enable the determination of RNA structure on a global scale

(Ding et al., 2014; Rouskin et al., 2014; Wan et al., 2014). DMS-seq uses next-generation sequenc-

ing to determine chemical accessibility of RNA to DMS (dimethyl sulfate), a reagent that reacts with

unpaired adenosine and cytosine nucleotides (Inoue and Cech, 1985). We adapted DMS-seq to E.

coli to monitor global in vivo RNA structure (Figure 1A). By exploring the effect of coverage on

reproducibility, we find that a read coverage of ~15 reads/nucleotide is sufficient for reproducible

structure determination (Figure 1B), and used this cutoff in all subsequent analyses. Structures

determined from E. coli-adapted DMS-seq are in excellent agreement with both the 16S rRNA crys-

tal structure (Figure 1C) (Zhang et al., 2009), and a mutationally verified E. coli mRNA structure

(Figure 1D) (Wikström et al., 1992).

We quantified the degree of secondary structure for each ORF using the Gini index metric, which

measures the variability in reactivity of A and C residues to DMS in the region being examined

(Rouskin et al., 2014). A low Gini index indicates a relatively even distribution of DMS-seq reads

and occurs in unstructured regions of the mRNA. A high Gini index occurs when a subset of residues

is strongly protected from DMS reactivity and indicates a high degree of structure (Figure 1E). We

found that the degree of RNA secondary structure varied greatly between ORFs: a small number are

nearly as structured as rRNA, whereas some are close to the denatured state (Figure 1F).

E. coli mRNAs have intrinsic ORF-wide secondary structures
In contrast to the large variation in the degree of secondary structure among ORFs (Figure 1F), indi-

vidual ORFs generally have fairly consistent Gini scores across their bodies – for example, the first

and second halves of each ORF exhibit highly correlated Gini scores (Figure 2A). We tested whether

the Gini scores across ORFs remained correlated in the absence of translation in two different condi-

tions. First, we examined Gini scores of in vivo mRNA when translation initiation was inhibited with

kasugamycin. We achieved rapid inhibition by using a DgcvB mutant, which has enhanced kasugamy-

cin uptake rates (Figure 2—figure supplement 1A; Shiver et al., 2016). Using DgcvB mutant is criti-

cal for this experiment because kasugamycin uptake by wild-type (WT) cells is slow enough to allow

massive degradation of mRNA before ribosomes are cleared (see extended methods for protocol

and Figure 2—figure supplement 1B–C for method validation, including demonstrating that DgcvB

does not alter global mRNA structure). Second, we examined Gini scores of purified mRNA refolded

in vitro at 37˚C. In both cases, the translation-independent mRNA structures obtained from DMS-

seq indicated that Gini scores across the ORF mRNAs remain correlated (Figure 2B–C). This correla-

tion also holds true for computationally predicted mRNA structure of ORFs (Figure 2D). Moreover,

the degree/extent of mRNA structures (henceforth referred to as structure) determined in these vari-

ous ways are highly correlated with each other (Figure 2E–F). We conclude that mRNA is organized

in ORF-wide structures that depend on the intrinsic sequence of the mRNA.
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Figure 1. DMS-seq effectively probes RNA structures in E. coli. (A) Schematic for obtaining mRNA structure and translation efficiency using DMS-seq,

mRNA-seq, and ribosome profiling from the same sample. (B) Plot showing the effect of DMS-seq read coverage on the reproducibility of structure

determination. X-axis: DMS-seq read depth cutoff (reads/nucleotide); Y-axis: median of Pearson’s R values calculated by comparing two replicates of in

vivo DMS-seq signals of the first 200nt of ORFs passing the DMS-seq depth cutoff indicated in X-axis. A read coverage of ~15 reads/nucleotide is

sufficient for reproducible structure determination. (C) Receiver operating characteristic (ROC) curve on the in vivo DMS-seq signals for A and C bases

in the 16S rRNA using the E.coli ribosome crystal structure (Zhang et al., 2009) as a model. True positives are defined as bases that are both unpaired

and solvent-accessible, and true negatives are bases that are paired. The total number of evaluated A/C bases is 438. Signal threshold of 0.2 has 90%

agreement with the crystal structure. (D) Structural prediction for rimM. The predicted rimM structure is based on a minimum free-energy prediction

constrained by our DMS-seq measurements, using the same 0.2 threshold used for the 16S rRNA in (B), which agrees with the rimM structure proposed

and mutationally verified in Wikström et al. (1992). The DMS-seq signal across rimM is shown below the structure. The color bar indicates the intensity

of the DMS-seq signal at each position. (E) Calculation of the Gini index from the DMS-seq signal is indicated schematically by comparing highly

structured regions to less structured regions. For a region of mRNA, the cumulative fraction of the total DMS-seq signal is plotted against the

cumulative fraction of the total number of positions as a Lorenz Curve. The extent to which the curve sags below the diagonal indicates the degree of

inequality of distribution, which is quantified by the Gini index defined as the ratio of the area between the diagonal line and the Lorenz Curve (a) to

Figure 1 continued on next page
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We next examined whether structural correlation extends to adjacent ORFs on the same polycis-

tronic (operonic) mRNA. We considered only those operons in which each ORF has an approximately

equivalent mRNA levels, thus excluding those with significant internal promoters or terminators (see

Materials and methods). Within operonic (polycistronic) mRNAs, the mRNA structure of adjacent

ORFs can differ significantly (Figure 2G and Figure 2—figure supplement 1D), even when the start

and stop codons of the adjacent ORFs overlap (Figure 2—figure supplement 1E). Thus, characteris-

tic mRNA structures are a property of individual ORF mRNAs rather than of the entire polycistronic

transcript.

Translation efficiency is highly correlated with ORF mRNA structure
We next explored the relationship between the level of ORF-wide mRNA structure identified above

with the TE of that ORF. We previously demonstrated that the overall rate of protein production can

be accurately measured by an ORF’s average ribosome footprint density (number of footprints per

unit length of the ORF), showing that protein copy number per cell determined from average ribo-

some footprint density was in superb agreement with that obtained by individually quantifying stable

proteins in E. coli (Li et al., 2014). Here, we build on that validated parameter, defining TE as the

rate of protein production per mRNA, measured by normalizing average ribosome footprint density

of an ORF with its mRNA abundance (i.e. RPKM of mRNA sequencing) (Ingolia et al., 2009; Li et al.,

2014; Oh et al., 2011), with both measurements obtained from the same biological samples (see

Materials and methods). Importantly, this metric is not affected by differences in either mRNA or

protein abundance or stability (Li, 2015).

We found that the TE’s of E. coli endogenous ORFs in operonic mRNAs were highly negatively

correlated with their level of ORF-wide mRNA structure (r = �0.75, Figure 3A: well-translated ORFs

have less mRNA structure, while poorly translated ORFs have more structure). Consistent with the

fact that the ORF-wide mRNA structures of adjacent ORFs in an operon can differ significantly

(Figure 2G), the TE’s of adjacent ORFs can also differ significantly (Figure 3B, Figure 3—figure sup-

plement 1A). Notably, ORF pairs with overlapping start and stop codons, believed to be translation-

ally coupled (Aksoy et al., 1984; Oppenheim and Yanofsky, 1980; Schümperli et al., 1982;

Yates and Nomura, 1981), show essentially as much variability in their relative translation as non-

overlapping ORF pairs (p=0.06, K-S test, Figure 3B), suggesting that the extent of coupling is vari-

able. We then expanded this analysis beyond operons to all ORFs and found that the level of mRNA

structure and TE are highly anti-correlated on all endogenous open reading frames (r = �0.76,

Figure 3C). Importantly, the Gini scores of ORFs calculated from control RNA samples without DMS

modification were not correlated to TE (r = 0.05, Figure 3—figure supplement 1B), indicating that

Gini scores calculated from DMS-seq indeed reflect the level of mRNA structure and the potential

sequencing bias/noise does not contribute to the correlation between TE and mRNA structure.

Translation itself can influence mRNA structure as the helicase activity of translating ribosomes is

likely to decrease the mRNA structure of highly translated ORFs more than that of poorly translated

ORFs. We asked whether TE is correlated solely to the mRNA structure that results from ribosome

unwinding or whether it is also correlated to the intrinsic mRNA structure that exists in the absence

of translation. We find that when translation is inhibited in vivo (e.g. following kasugamycin treat-

ment), the absolute correlation of TE to structure remains high but decreases somewhat (r = �0.58,

Figure 3D), and that there is a small further decrease in correlation when mRNAs are refolded in

vitro (r = �0.48, Figure 3E). Additionally, computationally predicted structures of entire ORFs also

show robust correlation to their TE’s (r = �0.52, Figure 3F). The results are very similar when we

confine ourselves to the 421 ORFs with �15 DMS reads/nucleotide in all conditions (Figure 4—fig-

ure supplement 2).

We further dissected the influence of translation on ORF mRNA structure by determining how the

difference in Gini score of in vivo mRNA with and without translation is related to its TE. We found

Figure 1 continued

the area below the diagonal line (a + b). A high Gini index indicates high level of mRNA structure, and vice versa. (F) Histogram of Gini indices of E. coli

ORFs calculated from in vivo DMS-seq data at 37˚C. All ORFs selected have �15 DMS-seq reads/nt (N = 1116). The Gini index of 16S rRNA and rimM,

and the mean of Gini indices of in vitro heat-denatured mRNAs at 95˚C are indicated.

DOI: 10.7554/eLife.22037.003
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Figure 2. E. coli mRNAs have intrinsic ORF-wide secondary structures. (A–C) Plots comparing the Gini indices of

the first half of the ORF against those of the second half of the ORF for: A. in vivo modified mRNA from cells

growing at 37˚C; B. in vivo modified mRNA from cells treated with kasugamycin (ksg) at 37˚C (no translating

ribosomes); C. in vitro mRNA modified at 37˚C. In this and all subsequent figures, analysis is performed only on

Figure 2 continued on next page
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that there is a tendency for mRNA to be more structured (higher Gini index) in the absence of trans-

lation (Figure 2E) and that mRNAs with the highest TEs had the greatest difference in their Gini’s

(r = 0.52, Figure 3G). These data are consistent with the idea that unwinding by ribosomes contrib-

utes to the in vivo structure of highly translated genes. The decreased correlation of untranslated

ORF mRNA structure to TE may result from removing the contribution of unwinding by translating

ribosomes.

Previous work on ORF translatability has pointed to the important role of sequences around the

ORF start site. Using the ORFs that are common in all datasets and separated by �20 nt from the

upstream ORF, we examined the correlation of TE with the level of mRNA structure only around the

start site or extending further into the ORF (Figure 3—figure supplement 1C). We find increasing

correlation with TE as successively larger regions of the ORF are considered in the structural analysis

(�20nt to 40nt, 0 to 60nt, and 0 to 100nt relative to the gene start). Notably, the correlation of TE

with extent of structure in either the first or second halves of the ORF are very similar, and the high-

est correlation is with the Gini of the ORF-wide mRNA structure.

In toto, these analyses indicate that the linear sequences of bacterial mRNAs encode not only

ORFs, but also ORF-wide secondary structures. These structures provide a rough blueprint for the

TE of that ORF. Instructions from this blueprint are augmented by ribosomes and additional factors

(see Discussion).

Translation efficiency is less correlated with other mRNA features
We next examined the ability of the Shine-Dalgarno sequence and codon usage to predict TE. Data

for all ORFs are presented in Figure 4, and that for the 421 ORFs in common between conditions

are presented in Figure 4—figure supplement 2.

Consistent with earlier studies (Li et al., 2014), we found that the strength of the Shine-Dalgarno

sequence does not have predictive power for TE, even after controlling for structure as measured by

Gini index (Figure 4—figure supplement 1A).

Codon usage, quantified by tAI (tRNA adaptation index) (dos Reis et al., 2004; Tuller et al.,

2010) modestly correlates with TE (r = 0.34, Figure 4A). Interestingly, codon usage correlates more

strongly with the overall rate of translation (i.e. average ribosome footprint density, r = 0.61) and

ORF mRNA abundance (RPKM of mRNA sequencing, r = 0.48) than with their TE’s (Figure 4B–C). In

contrast, the Gini score exhibits its highest correlation with TE (r = �0.76, Figure 3C) and is poorly

correlated with mRNA abundance (r = �0.05) (Figure 4—figure supplement 1C). This suggests that

codon bias may be evolutionally selected to correspond to the ORF expression level rather than to

its translation efficiency. Additionally, there is evidence that codon usage correlates with mRNA half-

life in both eukaryotes and prokaryotes (Boël et al., 2016; Presnyak et al., 2015). ORF-wide codon

usage (tAI) and intrinsic mRNA structure appear to be largely independent variables, as they show

little correlation with each other (Figure 4—figure supplement 1D). Although a novel metric quanti-

fying codon influence was highly successful at predicting protein production from overexpressed

Figure 2 continued

those ORFs with �15 DMS-seq reads per nucleotide, with N (the number of ORFs analyzed in each condition), and

r (the Spearman’s rank correlation coefficient) indicated. The ksg-treated sample has fewer ORFs passing the �15

DMS-seq reads/nt filter, likely due to mRNA degradation when translation is eliminated. Data calculated using

different sets of ORFs are summarized in Supplementary file 1–3. (D) Plot comparing the computationally

predicted mRNA structure (- minimum free energy / nucleotide or -DG/nt) of the first half of the ORF against that

of the second half of the ORF for the 480 ORFs in the ksg-treated DMS-seq dataset. (E) Correlation between Gini

indices of the entire ORF calculated from in vivo mRNA vs in vivo untranslated mRNA (ksg-treated cells) for the

465 ORFs in both datasets. The dashed grey line represents the y = x diagonal line. (F) Correlation between Gini

indices of the entire ORF calculated from in vivo mRNA vs in vitro refolded mRNA for the 708 ORFs shared in both

datasets. (G) Plot comparing Gini indices for adjacent ORFs in operons (N = 326; see Materials and methods for

details). The dashed grey line represents the y = x diagonal line.

DOI: 10.7554/eLife.22037.004

The following figure supplement is available for figure 2:

Figure supplement 1. mRNA structure is organized around open reading frames.

DOI: 10.7554/eLife.22037.005
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Figure 3. Translational efficiency (TE) is highly correlated with ORF mRNA structure. (A) Plots comparing the Gini

indices of ORFs in polycistronic operons calculated from in vivo DMS-seq to their TEs (N = 483). (B) Histograms of

TE ratios between adjacent non-overlapping (N = 253) or overlapping (N = 73) ORFs in operons (see

Materials and methods for details). Overlapping ORFs are ORF pairs for which the annotated stop codon of the

Figure 3 continued on next page
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exogenous genes transcribed by T7 RNA polymerase (Boël et al., 2016), it is relatively weakly corre-

lated with TE under physiological conditions for endogenous genes (r = 0.29) (Figure 4D). This sug-

gests that the codons providing efficient translation of an over-expressed transgene may differ from

the efficient codons for an endogenous gene, as overexpression causes amino acid starvation and

concomitant alteration of charged tRNA pools (Plotkin and Kudla, 2011; Welch et al., 2009;

Dittmar et al., 2005; Elf et al., 2003).

Overall, ORF-wide mRNA secondary structure is by far the strongest and most significant predic-

tor of endogenous TE compared to the other factors discussed above (Figure 4—figure supple-

ment 2). A linear regression model that includes the addition of the Boel metric, tAI, and Shine-

Dalgarno sequence strength showed marginal improvement in the predictive power compared to

the ORF-wide structure alone (Figure 4—source data 1). Therefore, rather than being a driver for TE,

codon optimization may be critical for highly expressed genes due to higher demand for these

tRNAs and may play a role in setting the appropriate mRNA half-life.

Overexpressing a protein with a rare codon alters endogenous
translation
Our results thus far indicate that the rules for endogenous translation differ from those for overex-

pressed genes, particularly in the role of codon choice. Considering the fact that the expression of

each tRNA species is tuned to the endogenous usage of its cognate codon(s) (Dong et al., 1996),

overexpressed transgenes are likely to perturb the balance between codon usage and tRNA abun-

dance, creating a global translation defect (Shah et al., 2013). To directly test this hypothesis, we

evaluated the effects of transgene overexpression containing one codon at a time. We constructed a

synthetic gene with only one sense codon after the initiating codon and expressed this minimal ORF

to directly assess the influence of a single tRNA and amino acid without additional complications

from the protein product. When the minimal ORF contains the rare leucine codon CUA, which has

only one cognate tRNA, we observed elevated ribosome occupancy at CUA codons in endogenous

genes (Figure 4G). In particular, slow translation at CUA codons in the leuL leader sequence triggers

the expression of leucine biosynthetic genes (Figure 4H), whereas overexpressing the minimal ORF

with the common leucine codon CUG or without any coding sequence does not change the expres-

sion level or ribosome occupancy at leucine codons of endogenous genes (Figure 4G and I). These

results suggest that overexpression of a rare codon and not a common codon can deplete the pool

of free cognate aa-tRNA molecules, leading to global perturbation of translation. Cells expressing a

transgene that contain more rare codons are thus under a different physiological state compared to

WT cells solely expressing endogenous genes.

mRNA structure at ORF boundaries in a polycistronic operon
Bacterial operons are densely packed with ORFs, as the majority of adjacent ORFs (62%) are sepa-

rated by only 25nt or less (Figure 5A). Our finding that ORF mRNAs have a roughly similar degree

of structure (Gini index) throughout their entire length (Figure 2A–D), but that the degree of struc-

ture of adjacent ORF mRNAs on polycistronic transcripts can differ significantly (Figure 2G) suggests

that mRNA structure undergoes a sharp transition at ORF boundaries.

Figure 3 continued

upstream ORF overlaps or is 3’ of the start codon of the downstream ORF. (C–E) Plots comparing the Gini indices

of endogenous ORF mRNAs calculated from DMS-seq data of: C. in vivo RNA; D. in vivo RNA with no translating

ribosomes (Ksg treated cells); E. in vitro modified refolded mRNA, to their TEs. For this and all subsequent panels,

data calculated using different sets of ORFs are summarized in Supplementary file 1–3. (F) Plot comparing

computationally predicted mRNA structure (- minimum free energy / nucleotide; -DG/nt) of the entire ORF body

to TE. (G) Plots of the difference in the Gini index between untranslated (ksg-treated) and translated in vivo mRNA

against their TE for the 465 ORFs in both datasets. X-axis: Gini index (in vivo untranslated) – Gini index (in vivo),

normalized by the average of the two.

DOI: 10.7554/eLife.22037.006

The following figure supplement is available for figure 3:

Figure supplement 1. Correlation between the mRNA structural level and translation efficiency.

DOI: 10.7554/eLife.22037.007
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Figure 4. Correlation of Other mRNA features with TE. (A–C) Plots comparing tAI (tRNA adaptation index) of the entire ORF against: A. translation

efficiency (TE, protein synthesis rate per mRNA); B. protein synthesis rate (average ribosome footprint density); C. mRNA abundance (RPKM mRNA

sequencing) of the ORF. For this and the following panels of this figure, the 1116 ORFs in the in vivo RNA DMS-seq dataset are analyzed

(Supplementary file 1). (D–F) Plots comparing codon influence across the entire ORF defined from overexpressing exogenous genes (Boël et al.,

2016) against: D. translation efficiency; E. protein synthesis rate; F. mRNA abundance of the ORF. (G) Average ribosome occupancy at leucine codons

in endogeneous genes when overexpressing a control plasmid (p-CTRL without a mini ORF) or plasmids with a heterologous CUA mini-ORF (p-CUA) or

a CUG mini-ORF (p-CUG). The ribosome occupancy at each leucine codon was normalized by the average ribosome density of the ORF. The relative

ribosome occupancy of that specific leucine codon was averaged across ORFs and normalized to that of the cells with control plasmid. (H–I) Gene

expression changes with the control plasmid and heterologous overexpression of CUA codon mini-ORF (H) or CUG codon mini-ORF (I). The average

ribosome footprint density of individual genes (see Materials and methods for details) was plotted in log2 scale.

DOI: 10.7554/eLife.22037.008

The following source data and figure supplements are available for figure 4:

Figure 4 continued on next page
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We examined the structural organization of mRNA at ORF boundaries in polycistronic mRNAs.

We find that the local degree of mRNA folding immediately downstream of the start site correlates

with the TE of the downstream gene, but that this correlation rapidly diminishes upstream of the

start site. Conversely, local mRNA structure upstream of the start site is only correlated with the TE

of the upstream ORF (Figure 5B). This is true not only for mRNAs that are being translated (WT

cells; Figure 5B) but also for untranslated mRNAs (kasugamycin-treated cells; Figure 5C), in vitro

refolded mRNAs (Figure 5D) and computationally predicted mRNA structures (Figure 5—figure

supplement 1A). Thus, mRNA structure undergoes a sharp transition at ORF boundaries, and poly-

cistronic mRNAs consist of distinct ORF-length structural domains.

ORFs are isolated from each other by forming ORF-specific RNA
structures
The close packing of ORF mRNAs raises the issue of how they maintain distinct structural domains,

and suggests that bacterial ORFs may be marked not only by start and stop codons, but also by fea-

tures that assist within-ORF mRNA folding. To investigate this, we computationally predicted the

structure of mRNA extending �250 to +250 nt from the translation start at the boundary of adjacent

ORF pairs within the same operon. Because folding algorithms often predict a large ensemble of

possible folds for a long stretch of RNA, we constrained the predictions by forcing positions that

were highly DMS-modified to be unpaired in the predicted structures.

Consistent with previous studies (Eyre-Walker and Bulmer, 1993; Scharff et al., 2011;

Bentele et al., 2013; Del Campo et al., 2015), we found a lack of structure in the immediate vicinity

of the start sites for most ORFs (Figure 5E). Downstream from this structure-free zone (25–50 nt),

endogenous mRNA has a high propensity to base pair with regions further downstream, that is pair-

ing within the same ORF (Figure 5F). Conversely, nucleotides located 25-50nt upstream of the start

site have a strong preference for interacting with regions further upstream in the preceding ORF

(Figure 5F). Importantly, in vivo mRNA without translating ribosomes and in vitro probed mRNA

(Figure 5E–F) also showed such preferences. Thus, the sharp transition in the directionality of base-

pairing around start sites is driven by the mRNA sequence itself, promoting ORF-centric units of sec-

ondary structure.

We experimentally investigated the effects of disrupting a region that promotes independent

mRNA folding within adjacent ORFs. The dusB-fis operon is composed of a highly structured

upstream gene (dusB) and a poorly structured downstream gene (fis) separated by 25 nucleotides.

The two ORFs have an ~100 fold difference in TE (Figure 6A). Previous work indicated that the

upstream dusB gene has a stem-loop structure near the 3’ end of the gene; that mutationally dis-

rupting the stem-loop (Mutation M3; Figure 6A) decreased translation of fis; and that restoring base

pairing by a second mutation (M2) restored fis translation for unknown reasons (Nafissi et al.,

2012). After confirming these results (Figure 6B), we performed DMS-seq on WT and mutant cells

to determine whether destroying the stem-loop decreased fis translation by reducing the structural

isolation of dusB and fis.

A model of the structure of the dusB-fis interface constrained by DMS-seq data (Figure 6D) indi-

cates that the dusB and fis ORFs are structurally distinct in WT and double mutant (M3/M2 or M3:2

cells) (Figure 6E), but that M3 increases the structure of fis mRNA (Figure 6C and Figure 6—figure

supplement 1). In the M3 mutant, the -58 ~ �53nt region (blue) pairs with the +9 ~ +14 nt region of

fis (red), rather than forming a stem-loop structure within dusB as it does in WT and M3:2 cells

(Figure 6E–F). The increased structure of fis mRNA in the M3 mutant starts at the ORF boundary

and spreads across the entire downstream coding region of fis (Figure 6—figure supplement 1).

Figure 4 continued

Source data 1. Linear regression model to predict TE based on different mRNA features.

DOI: 10.7554/eLife.22037.009

Figure supplement 1. Effect of SD strength, tAI, and codon influence on predicting TE of endogenous genes.

DOI: 10.7554/eLife.22037.010

Figure supplement 2. Comparison of the relative significance of different mRNA features in predicting TE.

DOI: 10.7554/eLife.22037.011
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Figure 5. ORFs are isolated from each other by forming ORF-specific RNA structures. (A) Cumulative distribution of spacing between adjacent ORFs

within operons of E. coli. X-axis: distance from 3’ of the stop codon of upstream genes (gene A) to 5’ of the start codon of downstream genes (gene B).

(B–D) Correlation between local mRNA structure quantified by Gini index and TE of adjacent ORFs in the same operon. X-axis: distance from the 5’ of

start codon of downstream ORFs (gene B). Y-axis: the absolute value of correlation (Spearman’s r) of local Gini indices, calculated from DMS-seq of in

vivo mRNA (B), in vivo untranslated mRNA (ksg-treated) (C) or in vitro modified mRNA (D), against TE of the upstream (gene A; dashed line) or the

downstream (gene B; solid line) gene. Gini indices were calculated within 300 nt windows scanning across the boundary between adjacent ORFs within

operons. The correlation to TE is plotted at the center of each 300 nt window. (E) Meta-gene analysis of mRNA structure in the vicinity of translation

initiation sites. Structure was predicted by applying the DMS-seq constrained minimum free-energy model calculated from in vivo mRNA (blue), in vivo

untranslated mRNA (ksg-treated; green) or in vitro modified mRNA (red). Mean predicted base-pairing probability of each nucleotide (averaged across

genes) was plotted across the boundary between adjacent ORFs within operons. (F) Plot of directionality of RNA folding at ORF boundaries. At each

position, the probability of base pairing with every other position was calculated for each ORF examined. The average sum probability of base-pairing

with any nucleotide in a 60 nt window upstream and in a 60 nt window downstream was calculated. Y-axis: the ratio of the downstream base-pairing

probability to the upstream base-pairing probability at each position (X-axis). The black arrows indicate preferential folding direction.

DOI: 10.7554/eLife.22037.012

The following figure supplement is available for figure 5:

Figure supplement 1. Structural isolation between mRNA of adjacent ORFs on the same operons.

DOI: 10.7554/eLife.22037.013
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Figure 6. Disruption of structural isolation between dusB and fis affects fis translation. (A) mRNA structure at the 3’ end of dusB, with mutations M3 and

M2 indicated. Translation efficiencies (TEs) of dusB and fis in WT cells are 0.02 and 2.06, respectively. (B) The dusB-M3 mutation decreases Fis

expression and is rescued by the complementary M2 mutation. Western blot compares Fis protein amounts in WT, dusB-M3 and dusB-M3:2 double

mutant cells, with RpoB protein as an internal control. (C) Scatter plots comparing Gini indices of ORFs in WT cells to those in dusB-M3 or in dusB-M3:2

double mutant cells. Outlier test: fis, Bonferonni p-value=1.02e�05 (dusB-M3); p-value>0.05 (dusB-M3:2). (D) Normalized DMS-seq signals at the dusB-

fis boundary region from different samples as indicated. Positions of M3 and M2 are highlighted, with asterisks indicating mutated nucleotides. X-axis:

Figure 6 continued on next page
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Thus, mutation M3 induces long-range interactions between mRNA of the dusB and fis ORFs, which

are normally structurally insulated from each other.

In toto, our results suggest that specific sequences isolate mRNA folding within adjacent ORFs

thereby minimizing structural crosstalk between adjacent ORFs. Disruption of structural boundaries

affects both local and long-range mRNA folding, which is likely to be critical for programming the

degree of translational isolation between ORFs on the same mRNA.

Discussion
Translation is a highly controlled process in bacteria, making it critical to understand the mRNA fea-

tures contributing to differential translatability. Numerous studies have investigated the important

question of which features control protein production from overexpressed, foreign ORF mRNAs,

identifying codon usage and local structure around the translation start site as key variables. How-

ever, these studies have left open the question of which mRNA features regulate endogenous trans-

lation. The importance of this question is highlighted by the observation that the rate of protein

production from each ORF in a polycistronic mRNA can vary as much as 100-fold. Our global study

now examines this issue. Our principal finding is that ORF mRNAs have modular structures within

polycistronic mRNAs and that ORF-wide mRNA structure rather than codon usage correlates most

strongly with the translation efficiency of endogenous ORFs.

Our analysis of mRNA structure revealed the unanticipated finding that operonic mRNAs have

modular structures. Each ORF mRNA in the operon has a characteristic degree of structure, with

highly correlated Gini scores between their first and second halves. This correlation persists in the

absence of translation, when mRNAs are refolded in vitro and when structure is determined compu-

tationally (Figure 2A–D). In stark contrast, there is little correlation between the extent of structure

in adjacent ORFs (Figure 2G). Additionally, and consistent with earlier computational findings, we

observe a small ~25 nucleotide region beginning at the translation start that is more unstructured

than the remainder of the ORF (Figure 5E). Thus, polycistronic mRNAs consist of a series of ORF-

wide modules each with characteristic but different extents of structure, punctuated by regions of

low basepairing at the translation start site (Figure 7). Maintenance of a common degree of struc-

ture throughout an ORF suggests that this parameter, like reduced structure at the start of ORFs, is

a selective force in the evolution of ORF sequence, providing yet another constraint on mRNA

sequence beyond codon adaptation (Sharp and Li, 1987).

We find that the TE of each ORF correlates very highly, and most strongly with the ORF-wide

extent of mRNA structure. We have begun to deconvolute the ‘chicken and egg’ problem of

whether mRNA structure is a cause or a consequence of translation by examining the correlation of

TE to ORF-wide structure when translation is inhibited. This removes the ribosome contribution but

retains vectorial folding, RNA binding proteins and in vivo concentrations of salts and macromole-

cules. Untranslated mRNA structure is highly correlated with TE but less so than translated mRNA

(Figure 3C–D). Moreover, the difference in the mRNA structure of an ORF with and without transla-

tion is highly correlated to its TE (Figure 3G). Thus, poorly translated mRNAs, have virtually identical

extents of structure with and without translation, but more highly translated RNAs become increas-

ingly more unstructured. Finally, computationally predicted structures or those obtained from in vitro

refolded mRNAs correlate somewhat more poorly with TE (r = �0.52 or �0.48 respectively) than

Figure 6 continued

distance from 5’ end of the fis start codon. Y-axis: normalized DMS-seq signals. Dashed line: threshold (0.2) above which the A/C bases are predicted

to be unpaired (see Materials and methods). (E) mRNA structure at the dusB-fis boundary region of WT or dusB-M3:2 cells, predicated by constraining

a minimum free-energy model with DMS-seq measurements. Locations of mutations M3 and M2 are as indicated. (F) mRNA structure at the dusB-fis

boundary region of dusB-M3 mutant cells, predicated by constraining a minimum free-energy model with DMS-seq measurements. CGG residues

labeled with asterisks indicate the M3 mutation.

DOI: 10.7554/eLife.22037.014

The following figure supplement is available for figure 6:

Figure supplement 1. mRNA secondary structure at the dusB-fis boundary region of WT cells and dusB mutants.

DOI: 10.7554/eLife.22037.015
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the structure of untranslated in vivo mRNA (r = �0.58) (Figure 3D–F). This suggests that features of

the in vivo cell, besides translation by the ribosome, may also affect mRNA structure.

Taken together, these results suggest that the intrinsic mRNA sequence itself encodes a rough

blueprint for the ORF-centric mRNA structures that are predictive of TE. These structures are then

amplified by translation and other features of the living cell, in a self-reinforcing loop, to provide the

structure that ultimately specifies the translation of each ORF.

Interestingly, E. coli has chosen to insert a predominance of its low TE ORFs into operons where

adjacent genes have moderately high TE’s (for example, the rpsF-priB-rpsR-rplI operon shown in Fig-

ure 3—figure supplement 1A). All of its 10 lowest TE ORFs, and 86% of its ORFs in the bottom

10% of TEs are located in operons, compared with 58% of all ORFs. The evolutionary advantage of

this arrangement is not known, but may relate either to decreasing transcriptional noise or to mRNA

stabilization.

The necessity for achieving widely different TEs for adjacent ORFs in operons may have driven

the evolution of the ORF-centric mRNA folding strategy. As the translation termination codon of

most ORFs is separated by less than 25nt of untranslated mRNA from the start site of the down-

stream ORF, the abundant ribosomes of the highly translated ORF could transiently open the struc-

ture of the poorly translated ORF and increase the accessibility of its start site. The propensity for in-

ORF mRNA folding at both the beginning and ends of ORFs may prevent the upstream ORF from

influencing the structure and hence TE of the downstream ORF, effectively insulating each ORF from

its neighbors. We have identified small regions, located about 25–50 nucleotides both downstream

and upstream of ORF translation start sites that preferentially pair within their ORFs. These regions

may reinforce the folding barriers between adjacent ORF mRNAs, as we demonstrated for the dusB-

fis operon. Interestingly, RNA polymerase pausing is enriched at translation start sites (Larson et al.,
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Figure 7. Model of operon mRNA structural organization. Polycistronic mRNAs are organized into ORF-centric

modules with characteristic but different extents of mRNA structure, punctuated by regions of low basepairing

close to the translational start site (A). The intrinsic ORF-wide mRNA structure is highly predictive of translation

efficiency (B), and is amplified by translation, in a self-reinforcing loop, to provide the mRNA structure that

ultimately specifies the translation of each ORF in an operon.
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2014) and this may reinforce ORF-centric structural insulation by allowing ORFs to fold indepen-

dently during the pioneer round of translation.

It is likely that the extent to which adjacent ORFs are insulated has been tuned. Approximately

15% of ORF pairs have overlapping stop and start codons and translational coupling has been dem-

onstrated in some cases (Aksoy et al., 1984; Oppenheim and Yanofsky, 1980; Schümperli et al.,

1982; Yates and Nomura, 1981). This overlap may enable upstream ribosomes to influence down-

stream ORF translation by unwinding mRNA structure, thereby promoting translational coupling.

Indeed, it is likely that the propensity for in-ORF basepairing is slightly weaker for overlapping ORF

pairs than for non-overlapping ORF pairs (Figure 5—figure supplement 1B–C).

The precise role of modular ORF structures that provide a rough blueprint for TE has not yet

been established. It is certainly possible that the mRNA structure of an entire or a significant fraction

of the ORF is required to define translation initiation, as has been demonstrated experimentally for

rimM (Wikström et al., 1992). Alternatively, a constant degree of ORF-wide mRNA structure may

be the most robust way to ensure the appropriate amount of mRNA structure around the translation

initiation site. In support of this idea, a recent study using in situ codon mutation of the E. coli essen-

tial gene infA showed that mutations of codons even far downstream from the start of the gene can

be deleterious if they disrupt the native 5’ RNA conformation via long-range structural interactions

predicted computationally (Kelsic et al., 2016). ORF-wide structures may also play additional roles.

For high TE (poorly structured) ORFs, extended lack of structure may provide the landing pad neces-

sary to capture a large pool of non-specifically bound 30S subunits to wait for opening of the SD

and start codon, the so-called ‘standby model’ of translation initiation (Adhin and van Duin, 1990;

de Smit and van Duin, 2003). Additionally, the ORF-centric mRNA folding strategy may have been

driven by the necessity for adjacent ORFs to have discrete, often significantly different TEs. Finally,

ORF-wide mRNA structures may help set the rate of endonucleolytic cleavage. The function of these

modules is an important area for future inquiry.

Although the TE of endogenous ORFs is primarily predicted by the extent of its mRNA structure,

translatability of overexpressed foreign ORFs appears to be strongly driven by codon usage and tRNA

limitation. This difference may arise from the fact that codon usage and tRNA abundance are largely

balanced under physiological conditions, but become imbalanced when foreign ORFs are overex-

pressed, and we have directly demonstrated that this is the case (Figure 4G–I). This suggests that syn-

thetic biologists and the cell tune translation in different ways. However, synthetic biologists struggle

to robustly program differential translation of ORFs on the same mRNA. Our finding that polycistronic

mRNAs consist of ORF-wide modules with set amounts of structure that are insulated from their neigh-

bors may be key to this issue. Design approaches that incorporate appropriate mRNA structures may

have the potential to produce the finely tuned synthesis rates observed in natural operons.

Materials and methods

Strains and growth conditions
E. coli K-12 MG1655 (RRID:SCR_002433) was used as the WT strain. All culture experiments were

performed in MOPS medium supplemented with 0.2% glucose, all amino acids except methionine,

vitamins, bases and micronutrients (Teknova, Hollister CA). Cells were grown in an overnight liquid

culture at 37˚C, diluted to an OD420 = 0.001 in fresh medium and grown until OD420 reached 0.4

where samples were collected. Multiple deletion strains were generated by transduction of FRT-

flanked deletion alleles from the Keio collection (Baba et al., 2006) followed by marker excision by

Flp recombinase (Cherepanov and Wackernagel, 1995). All major experiments were biologically

repeated for at least twice (see raw data files for sequencing data).

In the experiment testing the effects of overexpressing the rare CUA leucine codon and the com-

mon CUG leucine codon, plasmids with pBR322 origin of replication was constructed to have a mini

ORF ATGCTATAA or ATGCTGTAA driven by an IPTG-inducible promoter. The plasmid also contains

lacIq to increase the expression of lac repressor. MG1655 containing the control plasmid (without

mini ORFs) and MG1655 containing the plasmid with CUA or CUG mini ORF were grown overnight

in MOPS rich glucose medium with 100 mg/ml ampicillin, diluted 1:1000 into 250 ml pre-warmed

fresh medium containing 1 mM IPTG next morning. Cells were grown at 200 rpm at 37˚C and har-

vested when OD600 reached 0.3 by vacuum filtration.
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Ribosome profiling sample capture
The protocol for bacterial ribosome profiling with flash freezing was described (Li et al., 2014).

Briefly, 200 mL of cell culture were filtered rapidly and the resulting cell pellet was flash-frozen in liq-

uid nitrogen and combined with 650 mL of frozen lysis buffer (10 mM MgCl2, 100 mM NH4Cl, 20 mM

Tris-HCl pH 8.0, 0.1% Nonidet P40, 0.4% Triton X-100, 100 U/mL DNase I (Roche, St. Louis MO), 1

mM chloramphenicol). Cells were pulverized in 10 mL canisters pre-chilled in liquid nitrogen. Lysate

containing 0.5 mg of RNA was digested for 1 hr with 750 U of micrococcal nuclease (Roche) at 25˚C.
The ribosome-protected RNA fragments were isolated using a sucrose gradient followed by hot acid

phenol extraction. Library generation was performed using the previously described strategy

(Li et al., 2014) detailed below.

Total mRNA sample capture
For experiments performed in parallel with ribosome profiling, total RNA was phenol extracted from

the same lysate that was used for ribosome footprinting. For experiments performed independently

of ribosome profilng experiments, and for total mRNA used for in vitro DMS-seq experiments, 4 mL

of OD420 = 0.4 culture was added to 500 mL of ice-cold stop solution (475 mL of 100% EtOH and 25

mL acid phenol), vortexed, spun for 2 min at 8000 rpm, and the cell pellet was flash frozen in liquid

nitrogen. Total RNA was then hot acid phenol extracted. For mRNA-seq experiments, ribosomal

RNA and small RNA were removed from the total RNA with MICROBExpress (Ambion, Grand Island

NY) or Ribozero (Epicenter, Madison WI) and MEGAclear (Ambion), respectively. mRNA was ran-

domly fragmented as described (Ingolia et al., 2009). The fragmented mRNA sample was converted

to a complementary DNA library with the same strategy as for ribosome footprints.

Library generation for ribosome profiling and mRNA-seq
The footprints and mRNA fragments were ligated to miRNA cloning linker-1 (IDT) 5rApp/CTGTAGG-

CACCATCAAT/3ddC/, using a recombinantly expressed truncated T4 RNA ligase 2 K227Q pro-

duced in our laboratory. The ligated RNA fragments were reverse transcribed using the primer 5’/

5Phos/GATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCC GTATCATT/iSp18/CACTCA/

iSp18/CAAGCAGAAGACGGCATACGAATTGATG GTGCCTACAG 3’. The resulting cDNA was circu-

larized with CircLigase (Epicentre), and PCR amplification was done as described previously

(Ingolia et al., 2009).

DMS modification
For in vivo DMS modification, 15 mL of exponentially growing E. coli were incubated with 750 mL

DMS. Incubation was performed for 2 min at 37˚C. For kasugamycin (ksg) experiments, ksg was

added to a final concentration of 10 mg/mL to DgcvB cells for 2 min at 37˚C prior to DMS modifica-

tion. Untreated DgcvB cells were also modified by DMS and collected in parallel as control. DMS

was quenched by adding 30 mL 0˚C stop solution (30% b-mercaptoethanol, 25% isoamyl alcohol),

after which cells were quickly put on ice, collected by centrifugation at 8000 g and 4˚C for 2 min,

and washed with 8 mL 30% BME solution. Cells were then resuspended in 450 mL total RNA lysis

buffer (10 mM EDTA, 50 mM sodium acetate pH 5.5), and total RNA was purified with hot acid phe-

nol (Ambion). For in vitro DMS modifications, mRNA was collected from cells that were not treated

with DMS. Two micrograms of mRNA was denatured at 95˚C for 2 min, cooled on ice and refolded

in 90 mL RNA folding buffer (10 mM Tris pH 8.0, 100 mM NaCl, 6 mM MgCl2) at 37˚C for 30 min

then incubated in either. 2% DMS for 1 min (95˚C) or 4% DMS for 5 min (37˚C). The DMS reaction

was quenched using 30% BME, 0.3 M sodium acetate pH 5.5 and precipitated with 2 mL GlycoBlue

and 1X volume of isopropanol.

Library generation for DMS-seq samples
Sequencing libraries were prepared as described (Rouskin et al., 2014). Specifically, DMS treated

mRNA samples were denatured for 2 min at 95˚C and fragmented at 95˚C for 2 min in 1x RNA frag-

mentation buffer (Zn2+ based, Ambion). The reaction was stopped by adding 1/10 vol of 10X Stop

solution (Ambion) and quickly placed on ice. The fragmented RNA was run on a 10% TBU (Tris

borate urea) gel for 60 min. Fragments of 60–70 nucleotides in size were visualized by blue light

(Invitrogen, Carlsbad CA) and excised. Reverse transcription was performed in a 20 mL volume at
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52˚C using Superscript III (Invitrogen), and truncated reverse transcription products of 25–45 nucleo-

tides were extracted by gel purification.

Sequencing
Sequencing was performed on an Illumina HiSeq 2000 or 4000. Sequence alignment with Bowtie v.

0.12.0 mapped the footprint data to the reference genomes NC_000913.fna obtained from the NCBI

Reference Sequence Bank. Sequencing data frommutated strains were aligned to appropriately modi-

fied genome. For ribosome footprint and mRNA-seq samples, the center residues that were at least

12 nucleotides from either end were given a score of 1/N in which N equals the number of positions

leftover after discarding the 5’ and 3’ ends. For DMS-seq samples, read counts were assigned to the

base immediately 5’ of the 5’ end of each read, which is the base that was DMS-modified.

Translation efficiency calculation
Data analysis was performed with custom scripts written for R 2.15.2 and Python 2.6.6. To calculate

mRNA abundance, the number of mRNA sequencing reads mapped to a gene, following a Winsori-

zation applied to trim the top and bottom 5% of reads, was divided by the length of the gene to

yield the number of reads corresponding to the message per thousand bases of message per million

sequencing reads (RPKM). The protein synthesis rate of individual ORFs was measured by average

ribosome footprint density of the ORF calculated as described in (Li et al., 2014). First, genes with

less than 128 reads mapped and genes with unconventional translation events were excluded from

the analysis, which include (1) genes encoding selenoproteins (e.g. fdhF, fdoG, fdnG); (2) proteins

with nearly identical coding sequences (e.g. gadA and gadB, ynaE and ydfK, ldrA and ldrC, ybfD

and yhhI, tfaR and tfaQ, rzoD and rzoR, pinR and pinQ). Second, sequencing reads from ribosome

profiling mapped to the first and last five codons of the gene were excluded to remove effects of

translation and termination. Third, correction for the variations in translation elongation rate was

done in three steps as described in Li et al. (2014): (1) correcting for the elevated ribosome foot-

print density observed for the first 50–100 codons (Oh et al., 2011); (2) correcting for the elevated

density at the ribosomal anti-Shine-Dalgarno (aSD) site (Li et al., 2012); (3) correcting for other pos-

sible ribosome pausing using 90% Winsorization, by removing the top and bottom 5% of the ribo-

some profiling signal for each gene. Finally, the average ribosome footprint density of a gene was

calculated by dividing the corrected number of mapped ribosome footprint reads by the corrected

length of the gene. Translation efficiency of a gene was calculated by normalizing the average ribo-

some footprint density by the mRNA abundance of the gene (defined above). The average ribosome

footprint density (i.e. protein synthesis rate), mRNA abundance, and translation efficiency of genes

from different samples are listed in Supplementary file 1–4.

Computational prediction of RNA structures
For identification of unpaired bases, raw DMS-seq data was normalized to the most highly reactive

residue after removing outliers by 95% Winsorisation (all data above the 95th percentile is set to the

95th percentile). Bases with DMS-seq signal greater that 20% of the signal on the most highly reac-

tive residue (after normalization) were called ‘unpaired’. For determination of rimM mRNA struc-

tures, a Viennafold (Hofacker, 2003) (http://rna.tbi.univie.ac.at/) minimum free-energy model of the

indicated region was generated, constrained by bases experimentally determined to be unpaired in

the indicated dataset. Color-coding by DMS signal was done using VARNA (http://varna.lri.fr/).

Computing the agreement with ribosomal RNA
The secondary structure models for E. coli ribosomal RNAs were downloaded from Comparative

RNA Website and Project database (http://www.rna.icmb.utexas.edu/DAT/3C/Structure/index.php).

The crystal structure model was downloaded from Protein Data Bank (http://www.pdb.org, PDB

entries 3I1M, 3I1N, 3I1O, and 3I1P). The solvent-accessible surface area was calculated in PyMOL,

and DMS was modeled as a sphere with 2.5 Å radius (representing a conservative estimate for acces-

sibility because DMS is a flat molecule). Accessible residues were defined as residues with solvent

accessibility area of greater than 2 Å2. Unpaired residues in DMS-seq data were identified as

described above. True positive bases were defined as bases that are both unpaired in the secondary

structure model and solvent-accessible in the crystal structure model. True negative bases were
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defined as bases than are paired (A-U or C-G specifically) in the secondary structure model. Accuracy

was calculated as the number of true positive bases plus the number of true negative bases divided

by all tested bases.

Calculation of Gini index on DMS-seq data
The R package ‘ineq’ (https://github.com/cran/ineq) was used to calculate Gini indices over As and

Cs in the region specified for each experiment. For each DMS-seq sample, Gini indices were calcu-

lated only for genes that had greater than an average of 15 reads per nucleotide across the ORF.

Genes with discontinuous mRNA-seq reads (due to an early termination event or an internal pro-

moter, 1% of genes) were excluded from the analysis. Specifically, Gini indices were calculated on

mRNA-seq data, and a cutoff was created based on two standard deviations from the mean. The

Gini indices of genes from different samples were listed in Supplementary file 1–4.

Identification of adjacent open reading frames on operons
Adjacent ORFs in annotated operons often have differing levels of mRNA-seq reads, suggesting that

they are not always on the same mRNA molecule. To identify adjacent ORFs expressed as a single

operon, we assessed mRNA-seq data for equivalent mean message level and for signal continuity, as

described below. Equivalent mean message level was assessed by first determining the variability in

mean mRNA-seq read density within individual ORFs. There is a single transcript that extends over

the entire body of the large majority of ORFs, and so the variability in mean read density level in the

first half of each ORF was compared to mean read density in the second half of each ORF, and the

variability in this distribution was used to define a cut-off for ORFs on a single message. Adjacent

ORFs that fell within a 2s cutoff in mean level (calculated to be a 1.5-fold difference in mRNA level)

were determined to have equivalent mRNA level and were then assessed for signal continuity. Signal

continuity was assessed by first determining the distribution of read density in windows within mes-

sages. Gini index of mRNA-seq signal was calculated for all 80nt windows within ORF bodies, and

the variability in this distribution was again used to define a cutoff for continuous mRNA regions.

Gini index were then calculated for 80nt windows tiling the region between adjacent ORFs. Gene

pairs that fell within a 2s cutoff defined by the intra-ORF distribution were considered to be a pair

of adjacent ORFs on a single message.

Directionality of interaction predictions
To determine the directionality of mRNA base pairing at ORF boundaries, sequence from �250

to +250 nt relative to the translation start site of the downstream gene was extracted for each adja-

cent pair of ORFs. A Viennafold (Hofacker, 2003) (http://rna.tbi.univie.ac.at/) minimum free-energy

model of each 500nt sequence was generated (constrained by DMS-seq data). The predicted proba-

bility of each base interacting with every other base in each mRNA structure model was then

extracted from the Viennafold output. For each position, the probability of that position base pairing

with any position within the upstream or downstream 60nt was then calculated. The ratio between

summed upstream over downstream interaction probability across all mRNAs was then calculated

for each position.

Measurement of total protein synthesis
1 mC of Perkin Elmer EasyTag 35S labeled methionine (Product # NEG709A) was mixed with 5 mL

288 mmol unlabeled methionine and 24 mL media. At the time of capture, 900 mL of culture was

added to methionine mix, and was labeled on a shaker for 1 min at 37˚C. After labeling, 100 mL of

ice-cold 50% trichloracetic acid (TCA) was added to the sample, which was vortexed and placed on

ice for at least 20 min to allow precipitation. Samples were then counted by running 100 mL of sam-

ple through a 25 mm APFC glass fiber filter (Millipore APFC02500, Hainesport NJ) pre-wetted with

750 mL of 5% TCA on a vacuum stand, and washing three times with 750 mL 5% TCA and three times

with 750 mL 100% ethanol. Filters were then placed in MP Ecolume scintillation fluid and counted.

Shine-Dalgarno sequence strength calculation
We used the RBS Calculator established by Salis et al downloaded from http://www.github.com/hsa-

lis/Ribosome-Binding-Site-Calculator-v1.0 to predict the strength of Shine-Dalgarno sequence.
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tAI calculation
The measurement of tAI (tRNA adaptation index) was adapted from the previous works

(Tuller et al., 2010; dos Reis et al., 2004), which gauges the availability of tRNAs for each codon

within a gene. tAI incorporates different efficiency weights of the wobble interactions between

codons and anticodons, with wi is defined as the relative adaptiveness value of codon i of a gene

(Tuller et al., 2010). The final tAI of a gene is the geometric mean of all its codons as shown below.

tAI ¼ ð
YL

k¼1

!ikÞ
1=L

ik is the kth codon of the gene and L is the length of the gene (excluding start and stop codons).

Western blotting
Wild-type, dusB-M3, and dusB-M3:2 cells were grown in MOPS rich medium at 37˚C till log phase

(OD420 ~0.3). 1 mL cells were collected, resuspended in 30 mL SDS loading buffer, and boiled for 5

min. 10 mL of cell lysate was subject to Blot 12% Bis-Tris plus gel (ThermoFisher scientific, Grand

Island NY). Proteins were transferred to a nitrocellulose membrane (BIO-RAD, Hercules CA). The

membrane was first incubated with rabbit polyclonal anti-Fis antibody (a kind gift from Dr. Reid C.

Johnson at UCLA) and mouse monoclonal anti-RNAP b subunit antibody (abcam, Cambridge MA),

and then incubated with goat anti-rabbit IgG IRDye 800CW and anti-mouse IgG IRDye 680RD sec-

ondary antibodies (LI-COR, Lincoln NE). The blots were visualized and quantified by an Odyssey

imaging system (LI-COR). The amount of Fis protein in each sample was normalized against the

amount of RNAP b subunit in the same sample.

All the processed and raw datasets of sequencing experiments were uploaded to NCBI GEO

database with accession number GSE77617.
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