2,152 research outputs found

    Proton Decay and Cosmology Strongly Constrain the Minimal SU(5) Supergravity Model

    Full text link
    We present the results of an extensive exploration of the five-dimensional parameter space of the minimal SU(5)SU(5) supergravity model, including the constraints of a long enough proton lifetime (\tau_p>1\times10^{32}\y) and a small enough neutralino cosmological relic density (Ωχh021\Omega_\chi h^2_0\le1). We find that the combined effect of these two constraints is quite severe, although still leaving a small region of parameter space with m_{\tilde g,\tilde q}<1\TeV. The allowed values of the proton lifetime extend up to \tau_p\approx1\times10^{33}\y and should be fully explored by the SuperKamiokande experiment. The proton lifetime cut also entails the following mass correlations and bounds: m_h\lsim100\GeV, m_\chi\approx{1\over2}m_{\chi^0_2}\approx0.15\gluino, mχ20mχ1+m_{\chi^0_2}\approx m_{\chi^+_1}, and m_\chi<85\,(115)\GeV, m_{\chi^0_2,\chi^+_1}<165\,(225)\GeV for α3=0.113(0.120)\alpha_3=0.113\,(0.120). Finally, the {\it combined} proton decay and cosmology constraints predict that if m_h\gsim75\,(80)\GeV then m_{\chi^+_1}\lsim90\,(110)\GeV for α3=0.113(0.120)\alpha_3=0.113\,(0.120). Thus, if this model is correct, at least one of these particles will likely be observed at LEPII.Comment: 11 pages plus 5 figures (not included). CERN-TH.6628/92, CTP-TAMU-61/92. A condensed version of this paper will appear in the Proceedings of the XXVI International Conference on High Energy Physics, Dallas--Texas, August 5--12, 199

    Viewers base estimates of face matching accuracy on their own familiarity: Explaining the photo-ID paradox

    Get PDF
    Matching two different images of a face is a very easy task for familiar viewers, but much harder for unfamiliar viewers. Despite this, use of photo-ID is widespread, and people appear not to know how unreliable it is. We present a series of experiments investigating bias both when performing a matching task and when predicting other people’s performance. Participants saw pairs of faces and were asked to make a same/different judgement, after which they were asked to predict how well other people, unfamiliar with these faces, would perform. In four experiments we show different groups of participants familiar and unfamiliar faces, manipulating this in different ways: celebrities in experiments 1 to 3 and personally familiar faces in experiment 4. The results consistently show that people match images of familiar faces more accurately than unfamiliar faces. However, people also reliably predict that the faces they themselves know will be more accurately matched by different viewers. This bias is discussed in the context of current theoretical debates about face recognition, and we suggest that it may underlie the continued use of photo-ID, despite the availability of evidence about its unreliability

    Iron line profiles in Suzaku spectra of bare Seyfert galaxies

    Full text link
    We methodically model the broad-band Suzaku spectra of a small sample of six 'bare' Seyfert galaxies: Ark 120, Fairall 9, MCG-02-14-009, Mrk 335, NGC 7469 and SWIFT J2127.4+5654. The analysis of bare Seyferts allows a consistent and physical modelling of AGN due to a weak amount of any intrinsic warm absorption, removing the degeneracy between the spectral curvature due to warm absorption and the red-wing of the Fe K region. Through effective modelling of the broad-band spectrum and investigating the presence of narrow neutral or ionized emission lines and reflection from distant material, we obtain an accurate and detailed description of the Fe K line region using models such as laor, kerrdisk and kerrconv. Results suggest that ionized emission lines at 6.7 keV and 6.97 keV (particularly Fe XXVI) are relatively common and the inclusion of these lines can greatly affect the parameters obtained with relativistic models i.e. spin, emissivity, inner radius of emission and inclination. Moderately broad components are found in all objects, but typically the emission originates from tens of Rg, rather than within <6Rg of the black hole. Results obtained with kerrdisk line profiles suggest an average emissivity of q~2.3 at intermediate spin values with all objects ruling out the presence of a maximally spinning black hole at the 90% confidence level. We also present new spin constraints for Mrk 335 and NGC 7469 with intermediate values of a=0.70(+0.12,-0.01) and a=0.69(+0.09,-0.09) respectively.Comment: 19 pages, 7 figures, 9 tables, MNRAS accepte

    Adjoint Messengers and Perturbative Unification at the String Scale

    Get PDF
    We consider states in the adjoint representation of the Standard Model gauge group as messengers for mediation of supersymmetry (SUSY) breaking. These new messengers can shift the gauge coupling unification to the string scale at O(5x10^{17} GeV) if their masses are at O(10^{14} GeV). The predicted SUSY mass spectrum at the electroweak scale is significantly different from those in other gauge-mediated or supergravity models, resulting in robust mass relations. The gravitino mass is predicted to be about 1-10 GeV. The heavy messenger sector could provide a superheavy dark matter candidate.Comment: 9 pages, 2 figure

    Trileptons from Chargino-Neutralino Production at the CERN Large Hadron Collider

    Full text link
    We study direct production of charginos and neutralinos at the CERN Large Hadron Collider. We simulate all channels of chargino and neutralino production using ISAJET 7.07. The best mode for observing such processes appears to be pp\to\tw_1\tz_2\to 3\ell +\eslt. We evaluate signal expectations and background levels, and suggest cuts to optimize the signal. The trilepton mode should be viable provided m_{\tg}\alt 500-600~GeV; above this mass, the decay modes \tz_2\to\tz_1 Z and \tz_2\to H_{\ell}\tz_1 become dominant, spoiling the signal. In the first case, the leptonic branching fraction for ZZ decay is small and additional background from WZWZ is present, while in the second case, the trilepton signal is essentially absent. For smaller values of mtgm_{\tg}, the trilepton signal should be visible above background, especially if μmtg|\mu|\simeq m_{\tg} and m_{\tell}\ll m_{\tq}, in which case the leptonic decays of \tz_2 are enhanced. Distributions in dilepton mass m(ˉ)m(\ell\bar{\ell}) can yield direct information on neutralino masses due to the distribution cutoff at m_{\tz_2}-m_{\tz_1}. Other distributions that may lead to an additional constraint amongst the chargino and neutralino masses are also examined.Comment: preprint nos. FSU-HEP-940310 and UH-511-786-94, 13 pages (REVTEX) plus 7 uuencoded figures attache

    Predictions in SU(5) Supergravity Grand Unification with Proton Stability and Relic Density Constraints

    Get PDF
    It is shown that in the physically interesting domain of the parameter space of SU(5) supergravity GUT, the Higgs and the Z poles dominate the LSP annihilation. Here the naive analyses on thermal averaging breaks down and formulae are derived which give a rigorous treatment over the poles. These results are then used to show that there exist significant domains in the parameter space where the constraints of proton stability and cosmology are simultaneously satisfied. New upper limits on light particle masses are obtained.Comment: (An error in the reheating factor is corrected, strengthening the conclusions, i.e. the region in parameter space where the relic density constraints are satisfied is enlarged.

    Anomaly-Free Gauged R-Symmetry

    Get PDF
    We review the gauging of an R-symmetry in local and global susy. We then construct the first anomaly-free models. We break the R-symmetry and susy at the Planck scale and discuss the low-energy effects. We include a solution to the mu-problem, and the prediction of observable effects at HERA. The models also nicely allow for GUT-scale baryogenesis and R-parity violation without the sphaleron interactions erasing the baryon-asymmetry.Comment: 6 pages, latex, no figures. Talk presented at SUSY-95. Work done in collaboration with A. Chamseddin

    The Supersymmetric Particle Spectrum

    Full text link
    We examine the spectrum of supersymmetric particles predicted by grand unified theoretical (GUT) models where the electroweak symmetry breaking is accomplished radiatively. We evolve the soft supersymmetry breaking parameters according to the renormalization group equations (RGE). The minimization of the Higgs potential is conveniently described by means of tadpole diagrams. We present complete one-loop expressions for these minimization conditions, including contributions from the matter and the gauge sectors. We concentrate on the low tanβ\tan \beta fixed point region (that provides a natural explanation of a large top quark mass) for which we find solutions to the RGE satisfying both experimental bounds and fine-tuning criteria. We also find that the constraint from the consideration of the lightest supersymmetric particle as the dark matter of the universe is accommodated in much of parameter space where the lightest neutralino is predominantly gaugino. The supersymmetric mass spectrum displays correlations that are model-independent over much of the GUT parameter space.Comment: 62 pages + 10 PS figures included (uuencoded), MAD/PH/80

    Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures

    Get PDF
    Integration of superpartners out of the spectrum induces potentially large contributions to Yukawa couplings. These corrections, the supersymmetric threshold corrections, therefore influence the CKM matrix prediction in a non-trivial way. We study effects of threshold corrections on high-scale flavor structures specified at the gauge coupling unification scale in supersymmetry. In our analysis, we first consider high-scale Yukawa textures which qualify phenomenologically viable at tree level, and find that they get completely disqualified after incorporating the threshold corrections. Next, we consider Yukawa couplings, such as those with five texture zeroes, which are incapable of explaining flavor-changing proceses. Incorporation of threshold corrections, however, makes them phenomenologically viable textures. Therefore, supersymmetric threshold corrections are found to leave observable impact on Yukawa couplings of quarks, and any confrontation of high-scale textures with experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE
    corecore