54 research outputs found

    Minimal tau approximation and simulations of the alpha effect

    Full text link
    The validity of a closure called the minimal tau approximation (MTA), is tested in the context of dynamo theory, wherein triple correlations are assumed to provide relaxation of the turbulent electromotive force. Under MTA, the alpha effect in mean field dynamo theory becomes proportional to a relaxation time scale multiplied by the difference between kinetic and current helicities. It is shown that the value of the relaxation time is positive and, in units of the turnover time at the forcing wavenumber, it is of the order of unity. It is quenched by the magnetic field -- roughly independently of the magnetic Reynolds number. However, this independence becomes uncertain at large magnetic Reynolds number. Kinetic and current helicities are shown to be dominated by large scale properties of the flow.Comment: 11 pages, 12 figures, accepted by A&

    Constraints on the magnitude of alpha in dynamo theory

    Full text link
    We consider the backreaction of the magnetic field on the magnetic dynamo coefficients and the role of boundary conditions in interpreting whether numerical evidence for suppression is dynamical. If a uniform field in a periodic box serves as the initial condition for modeling the backreaction on the turbulent EMF, then the magnitude of the turbulent EMF and thus the dynamo coefficient \a, have a stringent upper limit that depends on the magnetic Reynolds number RMR_M to a power of order -1. This is not a dynamic suppression but results just because of the imposed boundary conditions. In contrast, when mean field gradients are allowed within the simulation region, or non-periodic boundary are used, the upper limit is independent of RMR_M and takes its kinematic value. Thus only for simulations of the latter types could a measured suppression be the result of a dynamic backreaction. This is fundamental for understanding a long-standing controversy surrounding α\alpha suppression. Numerical simulations which do not allow any field gradients and invoke periodic boundary conditions appear to show a strong α\alpha suppression (e.g. Cattaneo & Hughes 1996). Simulations of accretion discs which allow field gradients and allow free boundary conditions (Brandenburg & Donner 1997) suggest a dynamo α\alpha which is not suppressed by a power of RMR_M. Our results are consistent with both types of simulations.Comment: LaTex, version in press, Ap

    Cross helicity and turbulent magnetic diffusivity in the solar convection zone

    Full text link
    In a density-stratified turbulent medium the cross helicity is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations we find the cross helicity and the mean vertical magnetic field anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface exceeds the value of 1 Gauss km/s. Its sign is anti-correlated with that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.Comment: 9 pages, 2 figures, submitted to Solar Physic

    Global accretion disk simulations of magneto-rotational instability

    Get PDF
    We perform global three-dimensional simulations of accretion disks integrating the compressible, non-viscous, but diffusive MHD equations. The disk is supposed to be isothermal. We make use of the ZEUS-3D code integrating the MHD equations and added magnetic diffusivity. We measure the efficiency of the angular-momentum transport. Various model simulations delivered transport parameters of alpha_SS=0.01 to 0.05 which are consistent with several local numerical investigations. Two of the models reach a highly turbulent state at which alpha_SS is of the order of 0.1. After a certain stage of saturating of the turbulence, Reynolds stress is found to be negative (inward transport) in many of the models, whereas Maxwell stresses dominate and deliver a positive (outward) total transport. Several of the models yield strongly fluctuating Reynolds stresses, while Maxwell stresses are smooth and always transport outwards. Dynamo action is found in the accretion disk simulations. A positive dynamo-alpha is indicated in the northern hemisphere of the most prominent run, coming along with negative kinetic and current helicities (all having the opposite sign on the southern side). The dipolar structure of the magnetic field is maintained throughout the simulations, although indication for a decay of antisymmetry is found. The simulations covered relatively thick disks, and results of thin-disk dynamo models showing quadrupolar fields may not be compatible with the results presented here.Comment: 13 pages, LaTeX, submitted to A&

    Energy Loss of a High Charge Bunched Electron Beam in Plasma

    Full text link
    There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity. The physical basis for this effect is discussed, as are deviations from linear behavior observed in simulations with finite length beams.Comment: Submitted to Physical Review Letter

    Magnetoconvection and dynamo coefficients: Dependence of the alpha-effect on rotation and magnetic field

    Full text link
    We present numerical simulations of three-dimensional compressible magnetoconvection in a rotating rectangular box that represents a section of the solar convection zone. The box contains a convectively unstable layer, surrounded by stably stratified layers with overshooting convection. The magnetic Reynolds number, Rm, is chosen subcritical, thus excluding spontaneous growth of the magnetic field through dynamo action, and the magnetic energy is maintained by introducing a constant magnetic field into the box, once convection has attained a statistically stationary state. Under the influence of the Coriolis force, the advection of the magnetic field results in a non-vanishing contribution to the mean electric field, given by uxb. From this electric field, we calculate the alpha-effect, separately for the stably and the unstably stratified layers, by averaging over time and over suitably defined volumes. From the variation of alpha we derive an error estimate, and the dependence of alpha on rotation and magnetic field strength is studied. Evidence is found for rotational quenching of the vertical alpha-effect, and for a monotonic increase of the horizontal alpha-effect with increasing rotation. For Rm~30, our results for both vertical and horizontal alpha-effect are consistent with magnetic quenching by a factor 1/[1+Rm(B_0/B_eq)^2]. The signs of the small-scale current helicity and of the vertical component of alpha are found to be opposite to those for isotropic turbulence.Comment: 14 pages, 11 figures; to appear in Astronomy & Astrophysics (accepted
    • …
    corecore