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A REDERIVATION OF THE ALPHA EFFECT IN TERMS OF THE 
MAGNETIC FLUCTUATION SPECTRUM 

by 

R. K. Keinigs and R. A. Gerwin 

ABSTRACT 

We demonstrate that the alpha effect can be expressed 
in terms of the integrated current helicity spectrum of 
the turbulence. This is a much more convenient form than 
that obtained using a kinematic velocity field 
description. 

I. INTRODUCTION 

It is a simple exercise to show that a reversed-field pinch (RFP) cannot 

exist in a cylindrically symmetric, steady state. To demonstrate this let us 

consider that such a state does exist, and that the magnetic field has the 

following form: 

B(r) - Bz(r)z + Be(r)6 . 

Reversal implies that at some radius, rQ, Bz(r) changes sign; taking 

Bz(o) > 0, we have 

9B 

V*o>-°. TF|ro
<0 ' 

The condition that the field configuration is steady state implies that the 

magnetic flux, $(r), through a cylindrical cross section of radius, r, is 

constant in time. Therefore ee(r) must vanish for all r: 
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3B 
(|>(r) - / dS« _=.- - j d£«e 

- 2irr efl(r) = 0 

For anisotropic resistivity the electric field is given by 

£<r> -T-ii(r)+-r 1i,Cr> 
°1 CTI 

where a^ and oj are the perpendicular and parallel conductivities. The 

current is 

2 = j, b + jj_ 1 , 

where 

b = e + __ z , 
B B 

i _ Bz * Be * 
B B 

are unit vectors which lie in the flux surface, r * constant. Employing this 

representation for j, eg becomes 

'e-^ii + i*! 

. l Bz r
B z , _ B e > I B e f

Bz B e 1 

T [ T l X j e T jzJ+-o~X t r 3 « + T 3 e J 
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Since e^ must vanish for all r, we may choose r - r0; then since Bz(r0) - 0, 

1 B£<ro> 1 
ee(ro)-^--7TTje(ro)--f Je^o>-o • 

al B2(rQ)
 ffl 

The vanishing of je(r0) implies 3Bz/3r|r » 0 . But this contradicts the 

initial condition that rQ is a reversal point. Therefore this proves that no 

steady state can exist for a cylindrically symmetric RFP. Consequently there 

must be superimposed on any such steady, symmetric field profiles a 

time-dependent spectrum of fluctuations, or some amount of asymmetry. (An 

example of the latter is the "Helical Ohmic State". 1) 

If there does exist in the system a sea of fluctuations it may be 

possible to suppress the resistive diffusion of the mean magnetic field 

profiles [Bz(r,t), B0(r,t)]. It is apparent from the experimental 

measurements made on ZT-40 and other RFP devices that some anomaly or "dynamo" 

is responsible for the relatively long configuration times achieved. Such 

dynamo action may arise from turbulence. Essentially a dynamo is a mechanism 

which generates magnetic flux at a sufficiently rapid enough rate to balance 

or exceed resistive diffusion. In this paper we are primary interested in the 

"alpha effect", well-known in dynamo theory. This corresponds to a turbulent 

electromotive force that is parallel (or antiparallel) to the mean field, 

BQ(x,t). The alpha effect is central to the understanding of field generation 

in astrophysical plasmas and has been proposed as one viable candidate for 

explaining the sustainment of the reversed field in RFP devices.2 We 

demonstrate that a = £turb*^Bo^Bo^ c a n ^e conveniently represented in terms of 

the magnetic fluctuation spectrum. Some interesting comparisons are made with 

the results obtained for a via kinematic dynamo theory. 

II. THE DYNAMO EQUATION 

Our model calculation treats the idealized geometry of an unbounded 

plasma immersed in a strong magnetic field, BQ(x,t)z. The fluctuating fields 

are denoted by 6V(x,t), 6B(x,t), and it is assumed that there are no mean 

flows (VQ • 0). Naturally, due to the absence of bounding walls, 

extrapolation of the results to a real device must be viewed with caution. 



However, we think the physics of even this oversimplified geometry is 

sufficiently interesting to merit attention. What we want to understand is 

how turbulence affects the temporal evolution of the cylindrically symmetric, 

zero-order field profiles. The evolution of the total field, BQ(x,t) + 

6B(x,t), is governed by Faraday's equation. Substituting the electromotive 

force, e = nj - <SVxg/c, into this equation yields 

3B 2 
- - J£_ 72B = 7x(6VxB) , (1) 
dt H7T — ~ 

where for simplicity the resistivity, n, is assumed uniform. To obtain an 

equation for the mean field, BQ, a "two-scale" approximation is made (similar 

to quasi-linear theory) in which the temporal and spatial scales, (of , k - 1), 

associated with the turbulence are considered to be much shorter than the 

respective scales, (T,L), characterizing B (x,t). Angular brackets, < >, are 

used to represent a space-time average over the intermediate scales, (£0,x), 

which satisfy (uT1, k-1) « (*0,T) « (L,T). Applying < > to the velocity and 

magnetic fields implies <6V> - <<5B> = 0, <B> - BQ. In terms of this averaging 

Eq. (1) can be separated into two equations, one for the mean and one for the 

fluctuating magnetic field: 

9 Bo 
- £ - DV2B0 = Vx<6Vx5B> = Vxeae , (2) 

35B 
-gJI - D726B * Vx(6VxB0) + Vx[SVx6B - <SVxfiB>] , (3) 

where 

*Note that because of the large spatial scale difference separating the 
turbulent and mean fields this analysis does not apply to global aodes. 
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_ nc 
D = - — defines the resistive diffusion coefficient. 

4ir 

Equation (2) determines the evolution of the mean field in the presence 

of a turbulent emf. Our problem is that of calculating e g. (Obviously, if 

we set eag = 0 the magnetic field simply resistively decays.) Because BQ(x,t) 

is slowly varying compared with the fluctuating fields it can be considered as 

being constant,and uniform in Eq. (3). In an unbounded system the turbulent 

emf can be expanded in the form,3 

eaB * aijBj + &ijk -•£- Bj + (higher order terms). 

For our straight-field geometry we find 

ea6 » aB0 + BVxg0 + (higher order terms) . (4) 

The first term on the RHS of this equation defines the alpha effect; this is 

an emf directed parallel (or antiparallel) to the field, B . The second term 

represents the beta effect, a turbulent emf directed along the current. The 

principal objective of this report is the evaluation of the coefficient, a. 

Substituting Eq. (4) into Eq. (2)* (ignoring the higher order terns) 

yields the dynamo equation, 

- ^ -#V 2B 0 - a7xg0 , (5) 

where &'^ D-B. Note that B plays the role of a turbulent resistivity. Now 

assume a solution for BQ of the form, 
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IK «x + Yt 
B 0 ( x , t ) - B e "° ~ 

where necessar i ly |KQ| « l^turb' an(* ^ ^ "k* T n e n Eq. (5) reduces to 

(y +&k%)B0 - <xiK0xB0 . (6a) 

Taking the curl of Eq. (6a) y i e l d s 

(Y + ^ ) K 0 X B 0 - - c<iK2B0 . (6b) 

Combining Eqs. (6a) and (6b) results in a quadratic equation for Y. the 

solutions of which are 

y± - -B*l ± a K0 . 

Therefore, 

BQ(x,t) - e ° (2+e ° + B.e ° ) . 

Note that regardless of the'sign of a a growing solution exists provided that 

Id >#K 0 . (7) 

III. EVALUATING o 

In order to evaluate a a knowledge of the perturbed fields (or their 

statistical properties) is required. The fluctuating magnetic field can be 

determined from Eq. (3), while the velocity field is governed by the momentum 

equation, 
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p (~ + 6V.7 6V) + V6p + V»H - - , + f . (8) 

In Eq. (8) pQ, 6p, and n respectively denote the equilibrium mass density, the 

perturbed pressure, and the viscous stress tensor. The last term on the RHS, 

f, represents some unspecified forcing function which drives the turbulence 

and maintains it at a stationary level. Its presence allows us to assume 

that, although the system is dissipative, the frequencies of the fluctuating 

fields can be taken to be real. 

A dynamical solution to the dynamo problem requires self-consistent 

solutions to Eqs. (3) and (8). This necessitates a fully nonlinear treatment, 

and one could only hope to tackle such a problem using a 3-D code. If we try 

to simplify matters by linearizing each of these equations, a dispersion 

relation results; this yields no information about <SV or SB, and hence no 

information about <6Vx6B>. *c appears therefore that in order to proceed with 

evaluating eQ we must abandon one of these equations. One approach commonly 

employed is to specify the statistical properties of the velocity field 

a priori, and in so doing circumvent solving the momentum equation. (This is 

what is typically referred to as the "kinematic dynamo problem".) Given the 

velocity field statistics Eq. (3) can then be solved for SB(x,t), and <6Vx6B> 

evaluated. What results from this approach is an alpha effect expressed in 

terras of the two-point velocity correlation spectrum. For isotropic 

turbulence ea takes the form of a weighted integral of the kinetic helicity 

(hellcity ~ correlated velocity and vorticity, <6V»Vx6V>). Unfortunately, 

this result provides little aid for the experimentalist, since such 

correlations cannot be measured. 

What is needed is a way of expressing ea in terns of a more accessible 

quantity, say, either the density fluctuation spectrum or the magnetic 

fluctuation spectrum. We are able to accomplish the lf^ter by using an 

approach in which the statistical properties of the magnetic turbulence are 

specified. By then solving for 6V(x,t) in terms of 6B(x,t), <6Vx6B> can be 

conveniently expressed in terms of the integrated current helicity spectrum, 

<6B»Vx6B>. Although this approach is also kinematic, i.e., the actual 

dynamics of the turbulence is ignored, we reserve the nomenclature, "kinematic 

dynamo," for the more standard velocity-field approach. 
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We begin by considering Eq. (3), dropping the second term on the RHS. 

This approximation is known as "first-order smoothing";1* by ordering the 

various terms in Eq. (3) one finds that neglecting this term requires that the 

phase velocity of the perturbation be much larger than the field velocity, 

i.e., |ui/k| » |5V|. The reduced form of Eq. (3) then becomes 

3<SB 
-j=- - DV26B - - B0(V.6V) + (B0'V)6V . (9) 

(BQ is considered uniform.) Fourier transforming Eq. (9) yields 

(-iurf-Dk2) 6B(a),k) - - IB k«8V(u>,k) + ik«BQ 6V((o,k) . (10) 

At this stage what is usually done in kinematic dynamo theory is to assume 

incompresslbility and solve Eq. (10) for 6B(<D,k); Instead of following this 

procedure we rewrite Eq. (10) in the form, 

avc. , , , . - (•«*!) »<„,,) + ( ^ * ) 5 o . an 
£*£o ~ So 

and solve Eq. (11) for 6V(ui,k). If here we impose k*5V * 0 a simple solution 

for 6V(o),k) is obtained. However, this is unnecessary for evaluating a: 

recall that a is proportional to the turbulent emf that is directed along BQ. 

Since the second term in Eq. (11) is parallel to BQ this contribution to <5V 

cannot contribute to a. Neither will it contribute to a perpendicular emf, 

since by symmetry this must vanish. (Note that in a bounded system symmetry 

cannot be invoked to guarantee £± m 0, and this second term may become 

important. For a discussion of the "cross-field" alpha effect see Los Alamos 

report LA-9290-MS.5) Given that only the perpendicular component of 6V 

contributes to ea we may, without loss of generality, rewrite Eq. (11) as 
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6V((o,k) = - ("t1^2) 6Bi(u>k) + 6V„(a),k)B . (12) 

KzBo 

Now that 6V((o,k) has been determined, the electromotive force, ez, can be 

evaluated: 

ez = Re e zj A <6Vj(x,t)6BJl(x,t)> 

= - Re E Z U -L / dudu' / d3k d3k' exp [i(k-k')«x 
J B Q -co 

-i(ar-(o')t] • J!*"*_ <6Bi(a),k)6B^(aj',k')> . (13) 

This can be expressed in terms of the two-point spectral tensor for the 

magnetic correlations by rewriting the ensemble average in Eq. (13) as 

<6B.(a),k)6B^((o',k')> = / d ^ d V /°° dtdt' exp [i(a)t-to't') 
J *** — CO 

- i(k.x-k''x')] • <6B,(x,t)6Bl(x',t')> . 

Assuming the turbulence to be homogeneous and stationary, and making the 

change of variables, (r = x-x', • = t-t'), reduces this to the desired form, 

<<5Bi(w,k)6Bl(<a',k')> - / d3rdx / d^dt exp [i(u-o)')t 

- i(k-k')»x] • exp [-i(k'•£-(!)'T)] . 

<6Bj(x,t)6B
,jkx+r,t+T)> • 

- *jA(a),k)5(araj')6(k-k') . (14) 

The function, 4>j^(a),k), defines the Fourier spectral tensor for the two-point 

magnetic correlations. It is formally defined as 6 
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<t>j£(a),k) - / d
3rdt exp[i(o)t-k«r)] • <6Bj(x,t)6B^(x+r,t+T)> . 

The fact that the turbulence is homogeneous and stationary means that the term 

in < > depends only upon r and T. If a bounding wall is introduced the 

condition of homogeneity no longer applies. The spatial correlations of 

magnetic field fluctuations in bounded systems has been investigated by 

Turner.7 Substituting Eq. (14) into Eq. (13) yields for the coefficient, o, 

a- -*£ e ., j"d« / d \ ^ ^ - *u(«,k) . (15) 
B2 J — k

z
 J 

The statistical properties of the magnetic turbulence are manifest in the 

correlation tensor, <J>.= £((o,k). This tensor must satisfy two conditions: 

(i) reality -> f ^ « ^ , and 

(11) solenoidal => k.. <j> ̂  ĵ  =« 0 . 

This second condition arises from the requirement V«5B • 0. If fa^g 

represented velocity correlatiors then condition (ii) would only apply if 

V«6V * 0. The most general form for fa^g that satisfies (i) and (ii) is given 

by 

. , .. G((o,k,y) /-. kjk*i 

where v = k*z. The p dependence of the 'unctions, 6 and H, has been 

introduced in order to admit the possibility of the mean field imposing a 

10 



preferred axis of symmetry on the turbulence. If the turbulence is truly 

isotropic (spherically symmetric) then G and H are p independent. A 

reasonable parameter for distinguishing these two cases is flr^, the ratio of 

the ion-ion collision time (T^) to the ion gyroperiod (fi ) . If Jl^ « 1 then 

BQ is considered "weak" and has negligible influence on the turbulence. In 

the opposite limit, RT^ » 1, the mean field is considered "strong" and may 

ve a considerable effect on the dynamics. One obvious effect is a change in 

..I form of the viscous stress tensor. For this latter case the u dependence 

must be retained. 

The magnetic energy and current helicity spectral densities are related 

to the functions, G and H, via 

E(io,k) - i / dS fiiU.k) - j /j dw G(u),k,y) , (17a) 

1 ,1 
F(u,k) * i / dS einJlkn ^(co.k) - ± / dp H(»,k,u) , (17b) 

where dS denotes an integration over a spherical surface of radius, k. It is 

in terras of these quantities, E and F, that we wish to express a. In the case 

of fully isotropic turbulence G and H are identically equal to the energy and 

helicity spectral densities. However, since we are interested in strong mean 

fields we retain the u dependence. 

If we now substitute Eq. (16) into Eq. (15) a very simple form for a 

emerges. [Note that due to the permutation symbol, £z-t£, G(u,k,u) will not 

contribute.] 

Re F J ,, /•" , , 2 r
1 * wH.Dk2 

a » 
o 

4 ^ i , H ( a ) , k , p ) 
J n * ^ 8nk* 

11 
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1 k 

\ L du I dk T U dv ezJAeJn* IT H("»k»>,) 
Bo 

-D 

Bo2 

00 °° 1 1 

/^ du / dk ̂  / du H(uj,k,u) , or 

a - — / da) / dk F(to,k) . (18) 
R2 i- 6 

Equation (18) is our principal result. It indicates that two conditions are 

necessary in order for fine-scale turbulence to result in an alpha effect; 

these are 

(i) The system must be dissipative. Here the dissipation enters through 

the resistivity (D). The resistivity provides a necessary phase shift 

between SV and 6B without which eturb = 0. (This is a well-known 

result of kinematic dynamo theory also.) 

(ii) A finite current helicity, F(co,k) * 0, is required for dynamo action. 

This is equivalent to the statement that the magnetic turbulence lacks 

reflexional symmetry. A comment on compressibility: observe that in 

obtaining Eq. (18) we have not required V«5V * 0. However, since 

compressibility does explicitly enter this equation its effect, if 

any, must be buried in the helicity spectrum. 

IV. COMPARISON WITH KINEMATIC DYNAMO THEORY 

At this point it is appropriate to compare Eq. (18) and its implications 

for dynamo action with the results that are obtained for the alpha effect 

employing the more standard kinematic approach. For a detailed expose* on 

kinematic dynamo theory the reader is referred to the book by Moffatt1* froa 

which the following results are extracted. 

In contrast to our approach kinematic dynamo theory assumes that the 

statistical properties of the velocity field are known. Faraday's equation is 

then solved for 6B(w,k), after which <6Vx5B> can be evaluated. The analysis 

is similar to ours, except incoapressibility is assumed. (If V.fiv * 0, $*t 
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does not satisfy the solenoldal condition, and its form becomes mathematically 

more complicated.) 

Given V»6V • 0 and that the velocity fluctuations are isotropic 

(ftx̂  « 1), a has the following form: 

« - - • ! / do) / dk * F(o>,k) , (19) 
3 -08 ° coZ+D 2^ 

where F(co,k) defines the kinetic helicity spectral density. Once again, in 

order to have dynamo action dissipation is required, as is helicity (this time 

in the form of a finite correlation between the velocity and vorticlty 

fluctuations). Equation (19) is complicated however by the weighting factor 

present in the integrand. 

If we next consider the strong field limit (^T^ » 1) it is 

straightforward to show that a now assumes the form, 

a - - £ /" do) fdk - • i / du p2 H(u,k,y) . (20) 

Provided H is u independent this reduces to Eq. (19); but for the case of a 

strong magnetic field this is not likely, and the previous conclusion that a 

requires kinetic helicity may not apply. This is for the following reason: 

when there exists a preferred axis of symmetry the kinetic helicity spectrum 

is given by [see Eq. (19b)] 

F(u,k) - i / dy H((o,k,p) 

Comparing this to the u integral in Eq. (20) it appears possible that a may be 

finite, while at the same tine the helicity, F(u,k), vanishes. This is due to 

the weighting of the p integral in Eq. (20). However, according to Eq. (18), 

regardless of the symmetry, a net current helicity is required for finite ou 

This observation raises an interesting question: "In an electrically 

13 



conducting fluid are the current and kinetic helicities necessarily 

proportional?" If not, one must conclude that it is the current helicity, and 

not the kinetic helicity, which is the necessary physical quantity underlying 

dynamo action. 

It should be pointed out that for the geometry we have considered it is 

difficult to envision how helicity can be generated. It may be possible to 

preferentially excite one sign of helicity if a small amount of shear is 

introduced into BQ(x,t). This could have very interesting implications for 

RFP and is currently being investigated. 

V. SCALING OF |6B/BQ| WITH MAGNETIC REYNOLD'S NUMBER 

Now that a form for a has been obtained [Eq. (18)] it can be used to 

estimate the level of magnetic fluctuations required to compensate for 

resistive losses. According to Eq. (7) resistive diffusion can be balai"iced by 

dynamo action provided that | ot| >^%Q. For simplicity we will ignore 6, so 

Then Eq. (18) implies that for steady state we must have 

/" da> /"dk F(oJ'k) - KQ , (21) 

- * Bo2 

where K~ = a is a characteristic scale length for the mean field, BQ. Since 

the functional form of F(w,k) is unknown (a consequence of not having solved 

the full dynamical problem), we make a guess: assume that the turbulence is 

peaked in a narrow band about the frequency and wave vector pair (a>0,k0). 

Then the LHS of Eq. (21) can be approximated by i/(<»>0,k0)/B2, ^ e ^ ^('a^k0) 

now represents the current helicity in "real" space. c^(«J0>k0) can be 

expressed as some fraction, A, of the maximal helicity, where Ffflax is simply 

equal to k0E(u>0,k0), E being the magnetic fluctuation energy. Using these 

arguments, 

|6B(0)o,ko)|
2 

3 (uo»k0> "
 A ko E<0Jo»ko) * ^ o 81 
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and the condition for steady state becomes 

A „ l«B((o0,k0)|
2 ! 

8¥ k° li * Ko * I ' 
o 

The required fluctuation level is therefore 

,», « (J*)"' ( * )"< . (22) 
o o 

The problem reduces to that of finding an appropriate wave vector for the 

turbulence. As an example consider a spectrum of Alfve*n waves centered about 

~'CA . (23) 
Ko 

For very short wavelengths the resistive damping decrement increases until it 

is of the same magnitude as the real frequency, u>0. We may then conjecture 

that oi0 ~ Dk
2. Using this approximation Eq. (23) yields for k0> 

CA k « 

Substituting this into Eq. (22) gives 

a, _ r8mi>2 rD a ^n _ (8n-,i^ -i/z ,«, .&"'(.£•)"'-(")"' 8 - , (24) 
Bo L a 2 CA * 

where S * T R / T A defines the magnetic Reynold's number. This inverse scaling 
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of fluctuation level with S becomes more favorable as the plasma temperature 

increases. Bunting et al.8 have obtained a similar S-scaling for the case of 

growing resistive kink modes. The scaling obtained in Eq. (24) may differ if 

the frequency, u)Q, is determined by something other than the resistive cut-off 

frequency. 

VI. CONCLUSION 

We have shown that the alpha effect in a simple straight-field geometry 

is directly related to the integrated current helicity spectrum. The form of 

a is independent of the symmetry imposed on the turbulence by the magnetic 

field. We have estimated the magnetic fluctuation level required to give 

efficient dynamo action and found that it scales with magnetic Reynold's 

number as |6B/BQ| «• S -1/2. 

APPENDIX A 

AMPLIFICATION OF FORCE-FREE FIELDS 

It so happens that for force-free fields amplification requires that a 

and the current helicity of the mean field have the same sign. To show this 

consider a force-free field satisfying 

The dynamo equation [Eq. (5)] can then be expressed as 

So-^f^go » CA2) 

where again it is assumed that BQ has the temporal dependence, exp(yt). Now 

dot Eq. (A2) with BQ: 
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Bo2 - ̂ 5 o ' V x B 0 - *Z> i t . (A3) 

Jf~defines the current helicity associated with the mean magnetic field. It 

was shown in Sec. II that in order to amplify BQ (y > 0) |ccf must be greater 

than and B must have a preferred helicity. Let us assume that |a| >2'k, 

and consider the two possibilities for Ifr: (1) Yh> 0 and (2) JP< 0. For 

#- > 0, since the LHS of Eq. (A3) is positive, we must have (crK&j/y > 0. If 

a < 0, then y < 0 and BQ decays with time. If a > 0, then y > 0 and B0 is 

amplified. Case (2) can be treated in exactly the same manner with analogous 

results: a > BQ decays, a < g0 grows. Hence amplification of 

the mean field requires that a and & have the same sign. '(This observation 

was pointed out to the authors by Leaf Turner.) What is interesting about this 

result is that it indicates that amplification of a force-free field requires 

that the turbulent current helicity have the opposite sign of the mean-field 

helicity [see Eq. (18)]. We have not been able to show that this also holds 

for amplification of nonforce-free fields. 
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