486 research outputs found

    Participant recruitment to FiCTION, a primary dental care trial – survey of facilitators and barriers

    Get PDF
    Objective To identify reasons behind a lower than expected participant recruitment rate within the FiCTION trial, a multi-centre paediatric primary dental care randomised controlled trial (RCT). Subjects (materials) and methods An online survey, based on a previously published tool, consisting of both quantitative and qualitative responses, completed by staff in dental practices recruiting to FiCTION. Ratings from quantitative responses were aggregated to give overall scores for factors related to participant recruitment. Qualitative responses were independently grouped into themes. Results Thirty-nine anonymous responses were received. Main facilitators related to the support received from the central research team and importance of the research question. The main barriers related to low child eligibility rates and the integration of trial processes within routine workloads. Conclusions These findings have directed strategies for enhancing participant recruitment at existing practices and informed recruitment of further practices. The results help provide a profile of the features required of practices to successfully screen and recruit participants. Future trials in this setting should consider the level of interest in the research question within practices, and ensure trial processes are as streamlined as possible. Research teams should actively support practices with participant recruitment and maintain enthusiasm among the entire practice team

    Evidence for Pervasive Adaptive Protein Evolution in Wild Mice

    Get PDF
    The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans

    Rates of change of genetic parameters of body weight in selected mouse lines.

    Get PDF
    Summary A method based on the animal model is described which allows the estimation of continuous changes in variance components over time using restricted maximum likelihood (REML). The method was applied to the analysis of a selection experiment in which a foundation population formed from a cross between two inbred strains of mice (C57BL/6J and DBA/2J) was divergently selected for 6 week body weight over 20 generations. The analysis suggested that there was an increase in phenotypic variance of about 50 % in the low selected lines over the course of the experiment which was attributed to increases in the environmental and additive variance components. Variance changes in the High selected lines were generally smaller than in the Low lines, although there was an estimated 20 % increase in the environmental variance. Simple models to explain these effects involving dominance, linkage and epistasis were explored. Testing which of these was responsible for the variance changes noted in this experiment (if any) is difficult, although the epistasis and dominance models require less stringent conditions than the linkage model, and the dominance model is supported by evidence of heterosis in the F t

    Can Intra-Y Gene Conversion Oppose the Degeneration of the Human Y Chromosome? A Simulation Study

    Get PDF
    The human Y is a genetically degenerate chromosome, which has lost about 97% of the genes originally present. Most of the remaining human Y genes are in large duplicated segments (ampliconic regions) undergoing intense Y–Y gene conversion. It has been suggested that Y–Y gene conversion may help these genes getting rid of deleterious mutations that would inactivate them otherwise. Here, we tested this idea by simulating the evolution of degenerating Y chromosomes with or without gene conversion using the most up-to-date population genetics parameters for humans. We followed the fate of a variant with Y–Y gene conversion in a population of Y chromosomes where Y–Y gene conversion is originally absent. We found that this variant gets fixed more frequently than the neutral expectation, which supports the idea that gene conversion is beneficial for a degenerating Y chromosome. Interestingly, a very high rate of gene conversion is needed for an effect of gene conversion to be observed. This suggests that high levels of Y-Y gene conversion observed in humans may have been selected to oppose the Y degeneration. We also studied with a similar approach the evolution of ampliconic regions on the Y chromosomes and found that the fixation of many copies at once is unlikely, which suggest these regions probably evolved gradually unless selection for increased dosage favored large-scale duplication events. Exploring the parameter space showed that Y–Y gene conversion may be beneficial in most mammalian species, which is consistent with recent data in chimpanzees and mice

    How and why DNA barcodes underestimate the diversity of microbial eukaryotes

    Get PDF
    Background: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. Principal Findings: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependant. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. Conclusions: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous ''cryptic species'' will become discernable with the future acquisition of genomic and metagenomic sequences

    Engineering restoration and gaseous carbon uptake on a degraded bog: the role of Eriophorum angustifolium and micropropagated Sphagnum

    Get PDF
    Degraded peatlands are significant sources of carbon greenhouse gases (CGHG), and their recovery can make significant contributions to climate change mitigation as well as deliver biodiversity benefits. Sphagnum mosses are key species for northern peatland formation and re-introduction is often needed for successful ecohydrological restoration of degraded bogs, but natural sources are scarce and often protected. Micropropagated Sphagnum moss products (BeadaMoss®) were developed to alleviate this constraint. This research explored in detail, for the first time, the CGHG fluxes on a cut-over lowland peatland restoration site where micropropagated Sphagnum was introduced to an existing ‘nurse crop’ of Eriophorum angustifolium, and tested the influence of vegetation maturity. Ecosystem CGHG flux was measured using closed chambers at plot scale in areas of both mature and immature E. angustifolium with and without application of BeadaGel™ Sphagnum, with control plots on bare peat. Studies were conducted over two years of contrasting weather patterns. In Year 1, mean net (CO2e) CGHG uptake on vegetated plots was -2.33 (minimum 1.55, maximum -5.55) t ha-1 yr-1 with increasing CGHG uptake as vegetation matured. In Year 2, gross photosynthesis reduced significantly during the 2018 summer drought resulting in a small mean net CGHG emission of 0.11 (minimum 2.21 maximum -1.22) t ha-1 yr-1 . Sphagnum application within immature vegetation resulted in greater CGHG uptake in both years, but was not as beneficial within mature vegetation. CGHG emission from bare peat (3.79 t ha-1 yr-1 overall) showed the magnitude of avoided losses. Methane flux contributed significantly to CGHG emission but was not closely related to water table depth. Application of Sphagnum within E. angustifolium can deliver good CGHG flux results in the early stages of degraded lowland bog recovery but cannot fully mitigate vulnerability to climate change scenarios

    The Effect of Transposable Element Insertions on Gene Expression Evolution in Rodents

    Get PDF
    Background:Many genomes contain a substantial number of transposable elements (TEs), a few of which are known to be involved in regulating gene expression. However, recent observations suggest that TEs may have played a very important role in the evolution of gene expression because many conserved non-genic sequences, some of which are know to be involved in gene regulation, resemble TEs. Results:Here we investigate whether new TE insertions affect gene expression profiles by testing whether gene expression divergence between mouse and rat is correlated to the numbers of new transposable elements inserted near genes. We show that expression divergence is significantly correlated to the number of new LTR and SINE elements, but not to the numbers of LINEs. We also show that expression divergence is not significantly correlated to the numbers of ancestral TEs in most cases, which suggests that the correlations between expression divergence and the numbers of new TEs are causal in nature. We quantify the effect and estimate that TE insertion has accounted for ~20% (95% confidence interval: 12% to 26%) of all expression profile divergence in rodents. Conclusions:We conclude that TE insertions may have had a major impact on the evolution of gene expression levels in rodents

    Sexual selection protects against extinction

    Get PDF
    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336
    corecore