123 research outputs found

    Photoacoustic wavefront shaping with a long coherence length laser

    Get PDF
    Photoacoustic (PA) wavefront shaping (WS; PAWS) could allow focusing light deep in biological tissue. This could enable increasing the penetration depth of biomedical optical techniques including PA imaging. However, focussing at depth requires a light source of long coherence length (CL), presenting a challenge because the CLs of typical PA excitation lasers are short. To address this challenge, we developed a PAWS system based on an externally modulated external cavity laser with a long CL. The system was demonstrated by focussing light through rigid scattering media using both PAWS and optical WS. PAWS enabled focussing through diffusers with 8 × enhancements, while all-optical WS enabled focussing through various scattering media including a 5.8 mm thick tissue phantom. By enabling PAWS with increased coherence, the system could facilitate exploring the practical depth limits of PAWS, paving the way to focussing light deep in tissue

    Decadal variability of summer Southern African rainfall

    Get PDF

    Ultrasonic field mapping through a multimode optical fibre

    Get PDF
    Miniaturising ultrasonic field mapping systems could lead to novel endoscopes capable of photoacoustic tomography and other techniques. However, developing high-resolution arrays of sensitive, sub-millimetre scale ultrasound sensors presents a challenge for traditional piezoelectric transducers. To address this challenge, we conceived an ultrasonic detection concept in which an optical ultrasonic sensor array is read out using a laser beam scanned through a 0.24 mm diameter multimode optical fibre using optical wavefront shaping. We demonstrate this system enables ultrasonic field mapping with >2500 measurement points, paving the way to developing miniaturised photoacoustic endoscopes and other ultrasonic systems based on the presented concept

    Dynamics of Decadal Climate Variability and Implications for its Prediction

    Get PDF
    The temperature record of the last 150 years is characterized by a long-term warming trend, with strong multidecadal variability superimposed. The multidecadal variability is also seen in other (societal important) parameters such as Sahel rainfall or Atlantic hurricane activity. The existence of the multidecadal variability makes climate change detection a challenge, since Global Warming evolves on a similar timescale. The ongoing discussion about a potential anthropogenic signal in the Atlantic hurricane activity is an example. A lot of work was devoted during the last years to understand the dynamics of the multidecadal variability, and external as well as internal mechanisms were proposed. This White Paper focuses on the internal mechanisms relevant to the Atlantic Multidecadal Oscillation/Variability (AMO/V) and the Pacific Decadal Oscillation/Variability (PDO/V). Specific attention is given to the role of the Meridional Overturning Circulation (MOC) in the Atlantic. The implications for decadal predictability and prediction are discussed

    Surface warming hiatus caused by increased heat uptake across multiple ocean basins

    Get PDF
    The first decade of the twenty-first century was characterised by a hiatus in global surface warming. Using ocean model hindcasts and reanalyses we show that heat uptake between the 1990s and 2000s increased by 0.7 ± 0.3Wm−2. Approximately 30% of the increase is associated with colder sea surface temperatures in the eastern Pacific. Other basins contribute via reduced heat loss to the atmosphere, in particular the Southern and subtropical Indian Oceans (30%), and the subpolar North Atlantic (40%). A different mechanism is important at longer timescales (1960s-present) over which the Southern Annular Mode trended upwards. In this period, increased ocean heat uptake has largely arisen from reduced heat loss associated with reduced winds over the Agulhas Return Current and southward displacement of Southern Ocean westerlies
    corecore