442 research outputs found

    Decellularization of human donor aortic and pulmonary valved conduits using low concentration sodium dodecyl sulfate

    Get PDF
    The clinical use of decellularised cardiac valve allografts is increasing. Long term data will be required to determine whether they outperform conventional cryopreserved allografts. Valves decellularised using different processes may show varied long-term outcomes. It is therefore important to understand the effects of specific decellularisation technologies on the characteristics of donor heart valves. Human cryopreserved aortic and pulmonary valved conduits were decellularised using hypotonic buffer, 0.1% (w/v) SDS and nuclease digestion. The decellularised tissues were compared to cellular cryopreserved valve tissues using histology, immunohistochemistry, quantitation of total DNA, collagen and glycosaminoglycan content, in vitro cytotoxicity assays, uniaxial tensile testing and subcutaneous implantation in mice. The decellularised tissues showed no histological evidence of cells or cell remnants and over 97% DNA removal in all regions (arterial wall, muscle, leaflet and junction). The decellularised tissues retained collagen IV and von Willebrand factor staining with some loss of fibronectin, laminin and chondroitin sulphate staining. There was an absence of MHC Class I staining in decellularised pulmonary valve tissues, with only residual staining in isolated areas of decellularised aortic valve tissues. The collagen content of the tissues was not decreased following decellularisation however the glycosaminoglycan content was reduced. Only moderate changes in the maximum load to failure of the tissues were recorded post-decellularisation. The decellularised tissues were non-cytotoxic in vitro, and were biocompatible in vivo in a mouse subcutaneous implant model. The decellularisation process will now be translated into a GMP compatible process for donor cryopreserved valves with a view to future clinical use

    Comparative Toxicity of Tapentadol and Tramadol Utilizing Data Reported to the National Poison Data System

    Full text link
    BackgroundTapentadol (TAP) and tramadol (TRA) provide pain relief through similar monoaminergic and opioid agonist properties.ObjectiveTo compare clinical effects and medical outcomes between TAP and TRA exposures reported to the National Poison Data System of the American Association of Poison Control Centers.MethodsA retrospective cohort study was conducted analyzing national data for single medication TAP or TRA cases reported from June 2009 through December 2011. Case outcomes, dichotomized as severe versus mild; clinical effects; and use of naloxone were compared.ResultsThere were 217 TAP and 8566 TRA cases. Significantly more severe outcomes were associated with TAP exposures for an all-age comparison (relative risk [RR] = 1.24; 95% CI = 1.04-1.48), and for the <6-year-old age group (RR = 5.76; 95% CI = 2.20-15.11). Patients with TAP exposures had significantly greater risk of respiratory depression (RR = 5.56; 95% CI = 3.50-8.81), coma (RR = 4.16; 95% CI = 2.33-7.42), drowsiness/lethargy (RR = 1.38; 95% CI = 1.15-1.66), slurred speech (RR = 3.51; 95% CI = 1.98-6.23), hallucination/delusion (RR = 7.25; 95% CI = 3.61-14.57), confusion (RR = 2.54; 95% CI = 1.56-4.13) and use of naloxone (RR = 3.80; 95% CI = 2.96-4.88). TRA exposures had significantly greater risk of seizures (RR = 7.94; 95% CI = 2.99-20.91) and vomiting (RR = 1.96; 95% CI = 1.07-3.60).ConclusionTAP was associated with significantly more toxic clinical effects and severe outcomes consistent with an opioid agonist. TRA was associated with significantly higher rates of seizures and vomiting

    Development and characterisation of a low concentration SDS decellularised porcine dermis

    Get PDF
    The aim of this study was to adapt a proprietary decellularisation process for human dermis for use with porcine skin. Porcine skin was subject to: sodium chloride (I M) to detach the epidermis, trypsin paste to remove hair follicles, peracetic acid (0.1% v/v) disinfection, washed in hypotonic buffer and 0.1% (w/v) sodium dodecyl sulphate in the presence of proteinase inhibitors followed by nuclease treatment. Cellular porcine skin, decellularised porcine and human dermis were compared using histology, immunohistochemistry, GSL-1 lectin (alpha-gal epitope) staining, biochemical assays, uniaxial tensile and in vitro cytotoxicity tests. There was no microscopic evidence of cells in decellularised porcine dermis. DNA content was reduced by 98.2 % compared to cellular porcine skin. There were no significant differences in the biomechanical parameters studied or evidence of cytotoxicity. The decellularised porcine dermis retained residual alpha-gal epitope. Basement membrane collagen IV immunostaining was lost following decellularisation however laminin staining was retained

    Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis.

    Get PDF
    The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues. Phosphorylation results in the depletion of plasma membrane-localised IRS1/2, reducing the pool available for interaction with the insulin receptor. Together these events limit plasma membrane-associated PI3K and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis. We identified two Akt-dependent phosphorylation sites in IRS2 at S306 (S303 in mouse) and S577 (S573 in mouse) that are key drivers of this negative feedback. These findings establish a novel mechanism by which the kinase Akt acutely controls PIP3 abundance, through post-translational modification of the IRS scaffold

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Evaluation of a microbiological screening and acceptance procedure for cryopreserved skin allografts based on 14 day cultures

    Get PDF
    Viable donor skin is still considered the gold standard for the temporary covering of burns. Since 1985, the Brussels military skin bank supplies cryopreserved viable cadaveric skin for therapeutic use. Unfortunately, viable skin can not be sterilised, which increases the risk of disease transmission. On the other hand, every effort should be made to ensure that the largest possible part of the donated skin is processed into high-performance grafts. Cryopreserved skin allografts that fail bacterial or fungal screening are reworked into ‘sterile’ non-viable glycerolised skin allografts. The transposition of the European Human Cell and Tissue Directives into Belgian Law has prompted us to install a pragmatic microbiological screening and acceptance procedure, which is based on 14 day enrichment broth cultures of finished product samples and treats the complex issues of ‘acceptable bioburden’ and ‘absence of objectionable organisms’. In this paper we evaluate this procedure applied on 148 skin donations. An incubation time of 14 days allowed for the detection of an additional 16.9% (25/148) of contaminated skin compared to our classic 3 day incubation protocol and consequently increased the share of non-viable glycerolised skin with 8.4%. Importantly, 24% of these slow-growing microorganisms were considered to be potentially pathogenic. In addition, we raise the issue of ‘representative sampling’ of heterogeneously contaminated skin. In summary, we feel that our present microbiological testing and acceptance procedure assures adequate patient safety and skin availability. The question remains, however, whether the supposed increased safety of our skin grafts outweighs the reduced overall clinical performance and the increase in work load and costs

    The influence of personality and ability on undergraduate teamwork and team performance

    Get PDF
    The ability to work effectively on a team is highly valued by employers, and collaboration among students can lead to intrinsic motivation, increased persistence, and greater transferability of skills. Moreover, innovation often arises from multidisciplinary teamwork. The influence of personality and ability on undergraduate teamwork and performance is not comprehensively understood. An investigation was undertaken to explore correlations between team outcomes, personality measures and ability in an undergraduate population. Team outcomes included various self-, peer- and instructor ratings of skills, performance, and experience. Personality measures and ability involved the Five-Factor Model personality traits and GPA. Personality, GPA, and teamwork survey data, as well as instructor evaluations were collected from upper division team project courses in engineering, business, political science, and industrial design at a large public university. Characteristics of a multidisciplinary student team project were briefly examined. Personality, in terms of extraversion scores, was positively correlated with instructors’ assessment of team performance in terms of oral and written presentation scores, which is consistent with prior research. Other correlations to instructor-, students’ self- and peer-ratings were revealed and merit further study. The findings in this study can be used to understand important influences on successful teamwork, teamwork instruction and intervention and to understand the design of effective curricula in this area moving forward
    corecore