88 research outputs found

    Divergent reduplication as a phenomenon of linguistic creativity

    Get PDF
    The article analyzes reduction as a linguistic phenomenon and its role in the language game. Reduction exists in the vast majority of languages of the world. Despite of the existence of scientific studies of the graphic and phonetic originality of reduplicates in various languages, the content of these lexical units has not been sufficiently investigated. From the authors’ point of view, ignoring the pragmatic-communicative potential of reduplication creates a one-sided characteristic of this linguistic phenomenon. The role and functions of these language units in creating an aesthetic effect in communication are shown by examples of divergent reduplication. The authors distinguish some functions of divergent reduplication.В статье анализируется редупликация как лингвистический феномен и его роль в языковой игре. Редупликация существует в подавляющем большинстве языков мира. Несмотря на множество исследований графического и фонетического своеобразия редупликатов в различных языках, содержательная характеристика данных лексических единиц освещена недостаточно. Игнорирование прагматико-коммуникативного потенциала редупликации создает, по мнению авторов, однобокую характеристику данного лингвистического феномена. На примерах особого типа редупликации – дивергентной – показана роль и функции данных языковых единиц в создании эстетического эффекта в процессе коммуникации. Авторы выделяют ряд функций дивергентной редупликации

    The analysis of words, denoting values in linguistic disciplines

    Get PDF
    The article analyzes the main approaches to the study of values in linguistic disciplines, such as ethnolinguistics, ethnolinguistic culture studies, psycholinguistics, ecolinguistics, axiological linguistics, political linguistics and the theory of intercultural communication.В статье анализируются основные подходы к исследованию ценностей в лингвистических дисциплинах, таких как этнолингвистика, этнолингвокультурология, психолингвистика, эколингвистика, аксиологическая лингвистика, политическая лингвистика и теория межкультурной коммуникации

    Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy

    Full text link
    The gas circulation loop LOOPINO has been set up and commissioned at Tritium Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium mixtures under conditions similar to the inner loop system of the neutrino-mass experiment KATRIN, which is currently under construction. A custom-made interface is used to connect the tritium containing measurement cell, located inside a glove box, with the Raman setup standing on the outside. A tritium sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more than three weeks with a total throughput of 770 g of tritium. Compositional changes in the sample and the formation of tritiated and deuterated methanes CT_(4-n)X_n (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen isotope exchange reactions and gas-wall interactions, due to tritium {\beta} decay. A precision of 0.1% was achieved for the monitoring of the T_2 Q_1-branch, which fulfills the requirements for the KATRIN experiment and demonstrates the feasibility of high-precision Raman measurements with tritium inside a glove box

    Global Self-Organization of the Cellular Metabolic Structure

    Get PDF
    Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.Supported by the Spanish Ministry of Science and Education Grants MTM2005-01504, MTM2004-04665, partly with FEDER funds, and by the Basque Government, Grant IT252-07

    The design, construction, and commissioning of the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
    corecore