43 research outputs found
Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane, methanol and ethanol includes catalysts for reforming and oxidation, methods of catalyst synthesis, and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons, from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized
Effet de confinement du nickel dans des catalyseurs à base de silice mésoporeuse pour la production de gaz de synthèse par reformage du méthane avec le CO2
Although economically and environmentally advantageous, the methane dry reforming process using supported nickel based catalysts still faces problems of active phase (a transition metal) sintering and of carbon deposition, which result in catalytic activity loss. This thesis is focused on the study of the confinement effect of nickel in mesoporous silica-based catalysts for syngas production by reforming of methane with CO2. In this study, the samples were characterized by N2 sorption, XRD, TEM/SEM, TPR, in addition to Raman, XPS, TPH/MS, TGA/MS for the spent catalysts. The results indicate that a well-structured mesoporous support with high surface area and large pore volume is important for better dispersion and stabilization of the active phase inside the porosity. The mesoporous SBA-15 silica support (prepared in large quantity), composed of elongated grains, appear to be suitable for the purpose. Moreover, it is demonstrated that the formation of small nickel particles well-confined inside the pores favors carbon resistance. This can be achieved by applying hydrothermal treatment to the support, using two solvents method for Ni deposition, using direct reduction of uncalcined samples, adding Rh in small quantities or promoting with Ce, provided that Ni and Ce are in interaction.Malgré ses avantages économiques et environnementaux, le procédé de reformage à sec du méthane sur des catalyseurs au nickel supporté se heurte encore à des problèmes de frittage de la phase active (un métal de transition) et de dépôt de carbone, ce qui entraîne une diminution de l'activité catalytique. Cette thèse porte sur l'étude de l'effet de confinement du nickel dans des catalyseurs à base de silice mésoporeuse pour la production de gaz de synthèse par reformage du méthane par le CO2. Dans cette étude, les échantillons ont été caractérisés par physisorption de N2, DRX, MET/MEB, RTP, et, en plus, par Raman, SPX, HTP/SM, ATG/SM pour les catalyseurs après test catalytique. Les résultats montrent qu'un support mésoporeux bien structuré ayant une grande surface spécifique et un grand volume poreux est important pour une meilleure dispersion et stabilisation de la phase active à l'intérieur de la porosité. La silice mésoporeuse de SBA-15 (préparée en grande quantité), composée de grains allongés, semble être appropriée pour atteindre cet objectif. Il est de plus démontré que la formation de petites particules bien confinées à l'intérieur des pores favorise la résistance au dépôt de carbone. Ceci peut être obtenu en imposant un traitement hydrothermal au support, en utilisant la méthode deux solvants pour le dépôt de Ni, en passant à une réduction directe des échantillons non calcinés, en ajoutant du Rh en faibles quantités ou en utilisant du Ce comme promoteur, à condition que le Ni et Ce soient en interaction
Optimization of Synthesis Conditions of Ni/SBA-15 Catalysts: Confined Nanoparticles and Improved Stability in Dry Reforming of Methane
Despite its economic and environmental advantages, the dry reforming of methane using supported Ni-based catalysts remains challenging due to problems of metal particle sintering and carbon deposition, which lead to loss in catalytic activity. In this study, different silica supports, containing 5 wt% nickel, were prepared and characterized by N2 sorption, XRD, TPR, and TEM/SEM, in addition to Raman and TGA/MS for the spent catalysts. Different synthesis conditions were thus varied, like nickel deposition method, nature of nickel precursor salt, conditions for thermal activation, and nature of support. The results showed that enhanced metal dispersion, good confinement, and efficient stabilization of the active phase inside the pores can be achieved by using a well-structured mesoporous support. Moreover, it was demonstrated that carbon resistance can be improved when small nickel particles are well confined inside the pores. The strategies that affect the final dispersion of nickel particles, their consequent confinement inside (or deposition outside) the mesopores and the resulting catalytic activity and stability include mainly the application of hydrothermal treatment to the support, the variation of the nature of nickel precursor salt, and the conditions for thermal activation. General guidelines for the preparation of suitable Ni-based catalysts highly active and stable for dry reforming of methane (DRM) are thus presented in this work.</jats:p
Optimization of Synthesis Conditions of Ni/SBA-15 Catalysts: Confined Nanoparticles and Improved Stability in Dry Reforming of Methane
Despite its economic and environmental advantages, the dry reforming of methane using supported Ni-based catalysts remains challenging due to problems of metal particle sintering and carbon deposition, which lead to loss in catalytic activity. In this study, different silica supports, containing 5 wt% nickel, were prepared and characterized by N2 sorption, XRD, TPR, and TEM/SEM, in addition to Raman and TGA/MS for the spent catalysts. Different synthesis conditions were thus varied, like nickel deposition method, nature of nickel precursor salt, conditions for thermal activation, and nature of support. The results showed that enhanced metal dispersion, good confinement, and efficient stabilization of the active phase inside the pores can be achieved by using a well-structured mesoporous support. Moreover, it was demonstrated that carbon resistance can be improved when small nickel particles are well confined inside the pores. The strategies that affect the final dispersion of nickel particles, their consequent confinement inside (or deposition outside) the mesopores and the resulting catalytic activity and stability include mainly the application of hydrothermal treatment to the support, the variation of the nature of nickel precursor salt, and the conditions for thermal activation. General guidelines for the preparation of suitable Ni-based catalysts highly active and stable for dry reforming of methane (DRM) are thus presented in this work
Effect of pore geometry of mesoporous supports on catalytic performances in methane reforming
Catalysts prepared using three dimensional SBA-16 silica support (composed of micropores and cage-like mesopores) were tested in the reaction of methane dry reforming, in comparison with 2D hexagonal mesoporous SBA-15 support. The samples were evaluated by N2 sorption and X-Ray diffraction (XRD) for the assessment of their textural and structural properties. The reducibility was characterized by temperature programmed reduction (TPR). The catalytic performances were evaluated in methane dry reforming and spent catalysts (after reaction) were characterized for the evaluation of sintering and coke formation by TPH/MS, XRD and HR-TEM
Rh-Ni/SBA-15 prepared by two solvents method as stable catalysts for the dry reforming of methane at high pressure
International audienceThe effect of Rh addition on the catalytic performance of Ni/SBA-15 catalysts was studied in the dry reforming of methane. The SBA-15 silica support was synthesized in large quantities and the metals were deposited using the two solvents impregnation method. The properties of the calcined, reduced and spent catalysts were studied using the N2 sorption isotherms, XRD, H2-TPR, SEM, TEM and Raman spectroscopy. It was shown that the SBA-15 porous structure was maintained throughout the study with high dispersion of the metals inside the pores. The Ni/SBA-15 catalyst was stable for more than 90h of testing owing to the porous structure of the support that stabilizes the particles and prevents their sintering; thus the promotion with 0.5 wt% Rh showed a minor improvement of the catalytic stability. The 0.5Rh-Ni/SBA-15 catalyst was also stable at 650°C and 9 bars for more than 200 min
Effet de l'ordre d'ajout du Ni et du Ce dans SBA-15 sur l'activité en reformage à sec du methane
International audienceDry reforming of methane has been carried out on SBA-15 catalysts containing 5 wt% Ni and 6 wt% Ce. The effect of the order of Ni and Ce impregnation on the catalytic activity has been studied. Both metals were added using the “two-solvent” method that favors metal dispersion inside the pores. Characterizations by XRD (low and high angles), N2 sorption, SEM and TEM of the materials after metal addition and calcination indicate good preservation of the porosities and high NiO and CeO2 dispersion inside the porous channels. Reduction was carried out before the catalytic tests and followed by TPR measurements. The most active reduced catalyst was the Ni–Ce/SBA-15 sample prepared by impregnating cerium first, then nickel. All catalysts were highly active and selective towards H2 and CO at atmospheric pressure. Full CH4 conversion was obtained below 650 °C. The higher performances compared to those reported in the literature for mesoporous silica with supported Ni and Ce catalysts are discussed.Le reformage à sec du méthane a été étudié sur des catalyseurs SBA-15 contenant 5 % en poids de Ni et 6 % en poids de Ce. L’effet de l’ordre d’imprégnation de Ni et Ce sur l’activité catalytique a été étudié. Ces deux métaux ont été ajoutés en utilisant la méthode « à deux solvants », qui favorise la dispersion du métal à l’intérieur des pores. Les caractérisations par DRX (petits et grands angles), adsorption de N2, MEB et MET des matériaux après ajout du métal et calcination montrent une bonne préservation de la porosité et une grande dispersion des nanoparticules de NiO et CeO2 à l’intérieur des pores. La réduction des catalyseurs suivie par RTP a été effectuée avant tests catalytiques. Le catalyseur le plus actif est le Ni–Ce/SBA-15 réduit, préparé par imprégnation, tout d’abord du cérium, puis du nickel. Les catalyseurs étaient très actifs et sélectifs en H2 et CO sous pression atmosphérique, avec une conversion complète de CH4 atteinte avant 650 °C. Les performances supérieures à celles décrites dans la littérature pour des catalyseurs à base de silice mésoporeuse contenant du Ni et du Ce sont discutées
