129 research outputs found

    Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.

    Get PDF
    The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts

    Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium.

    Get PDF
    BACKGROUND: Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential. METHODS: To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of IFD. A final version of the manuscript was agreed upon after the groups' findings were presented at a scientific symposium and after a 3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved. RESULTS: There is no change in the classifications of "proven," "probable," and "possible" IFD, although the definition of "probable" has been expanded and the scope of the category "possible" has been diminished. The category of proven IFD can apply to any patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immunocompromised patients only, except for endemic mycoses. CONCLUSIONS: These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of a broader range of patients at high-risk

    Boolean network simulations for life scientists

    Get PDF
    Modern life sciences research increasingly relies on computational solutions, from large scale data analyses to theoretical modeling. Within the theoretical models Boolean networks occupy an increasing role as they are eminently suited at mapping biological observations and hypotheses into a mathematical formalism. The conceptual underpinnings of Boolean modeling are very accessible even without a background in quantitative sciences, yet it allows life scientists to describe and explore a wide range of surprisingly complex phenomena. In this paper we provide a clear overview of the concepts used in Boolean simulations, present a software library that can perform these simulations based on simple text inputs and give three case studies. The large scale simulations in these case studies demonstrate the Boolean paradigms and their applicability as well as the advanced features and complex use cases that our software package allows. Our software is distributed via a liberal Open Source license and is freely accessible fro

    Composite Higgs Search at the LHC

    Full text link
    The Higgs boson production cross-sections and decay rates depend, within the Standard Model (SM), on a single unknown parameter, the Higgs mass. In composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone boson from a strongly-interacting sector, additional parameters control the Higgs properties which then deviate from the SM ones. These deviations modify the LEP and Tevatron exclusion bounds and significantly affect the searches for the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced, which results in deterioration of the Higgs searches but the deviations of the Higgs couplings can also allow for an enhancement of the gluon-fusion production channel, leading to higher statistical significances. The search in the H to gamma gamma channel can also be substantially improved due to an enhancement of the branching fraction for the decay of the Higgs boson into a pair of photons.Comment: 32 pages, 16 figure

    Monotone and near-monotone biochemical networks

    Get PDF
    Monotone subsystems have appealing properties as components of larger networks, since they exhibit robust dynamical stability and predictability of responses to perturbations. This suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone in the sense of being decomposable into a “small” number of monotone components, In addition, recent research has shown that much insight can be attained from decomposing networks into monotone subsystems and the analysis of the resulting interconnections using tools from control theory. This paper provides an expository introduction to monotone systems and their interconnections, describing the basic concepts and some of the main mathematical results in a largely informal fashion

    Once-weekly selinexor, bortezomib, and dexamethasone versus twice-weekly bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label phase 3 trial

    Get PDF
    Background Selinexor with dexamethasone has demonstrated activity in patients with heavily pretreated multiple myeloma (MM). In a phase 1b/2 study, the combination of oral selinexor with the proteasome inhibitor (PI) bortezomib, and dexamethasone (SVd) induced high response rates with low rates of peripheral neuropathy, the main dose-limiting toxicity of bortezomib. The aim of this trial was to evaluate the clinical benefit of weekly SVd versus standard bortezomib and dexamethasone (Vd) in patients with previously treated MM. Methods This phase 3, randomised, open label trial was conducted at 123 sites in 21 countries. Patients who were previously treated with one to three lines of therapy, including PIs were randomised (1:1) to selinexor (100 mg once-weekly) plus bortezomib (1·3 mg/m2 once-weekly) and dexamethasone (20 mg twice-weekly) [SVd] or bortezomib (1·3 mg/m2 twice-weekly) and dexamethasone (20 mg 4 times per week) [Vd]. Randomisation was done using interactive response technology and stratified by previous PI therapy, lines of treatment, and MM stage. The primary endpoint was progression-free survival (PFS) in the intention-to-treat population. Patients who received at least one dose of study treatment were included in the safety population. This trial is registered at ClinicalTrials.gov, NCT03110562. Findings Between June 2017 and February 2019, 402 patients were randomised: 195 to SVd and 207 to Vd. Median PFS was 13·93 (95% CI 11·73–NE) with SVd versus 9·46 months (8·11–10·78) with Vd; HR 0·70, [95% CI 0·53–0·93]; P=0.0075. Most frequent grade ≥3 adverse events (SVd vs Vd) were thrombocytopenia (77 [40%] vs 35 [17%]), fatigue (26 [13%] vs 2 [1%]), anaemia (31 [16%] vs 20 [10%]), and pneumonia (22 [11%] vs 22 [11%]). Peripheral neuropathy rates (overall, 32·3% vs 47·1%; OR 0·52, [95% CI 0·35-0·79]; P=0.0010 and grade ≥2, 21·0% vs 34·3%; OR 0·50, [95% CI 0·32-0·79]; P=0.0013) were lower with SVd. There were 47 (24%) deaths on SVd and 62 (30%) on Vd. Interpretation Once-weekly SVd is a novel, effective, and convenient treatment option for patients with MM who have received 1-3 prior therapies. Funding Karyopharm Therapeutics In

    In vivo and in silico determination of essential genes of Campylobacter jejuni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the United Kingdom, the thermophilic <it>Campylobacter </it>species <it>C. jejuni </it>and <it>C. coli </it>are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate <it>C. jejuni </it>and <it>C. coli </it>from the food chain.</p> <p>Results</p> <p>A metabolic model of <it>C. jejuni </it>was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium <it>Helicobacter pylori</it>, and extensive literature mining. Using this model, we have used <it>in silico </it>Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this <it>in silico </it>approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published <it>Campylobacter </it>protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy.</p> <p>Conclusions</p> <p>We have constructed the first curated metabolic model for the food-borne pathogen <it>Campylobacter jejuni </it>and have presented the resulting metabolic insights. We have shown that the combination of <it>in silico </it>and <it>in vivo </it>approaches could point to non-redundant, indispensable genes associated with the well characterised shikimate pathway, and also genes of unknown function specific to <it>C. jejuni</it>, which are all potential novel <it>Campylobacter </it>intervention targets.</p

    Physiological Stress and Refuge Behavior by African Elephants

    Get PDF
    Physiological stress responses allow individuals to adapt to changes in their status or surroundings, but chronic exposure to stressors could have detrimental effects. Increased stress hormone secretion leads to short-term escape behavior; however, no studies have assessed the potential of longer-term escape behavior, when individuals are in a chronic physiological state. Such refuge behavior is likely to take two forms, where an individual or population restricts its space use patterns spatially (spatial refuge hypothesis), or alters its use of space temporally (temporal refuge hypothesis). We tested the spatial and temporal refuge hypotheses by comparing space use patterns among three African elephant populations maintaining different fecal glucocorticoid metabolite (FGM) concentrations. In support of the spatial refuge hypothesis, the elephant population that maintained elevated FGM concentrations (iSimangaliso) used 20% less of its reserve than did an elephant population with lower FGM concentrations (Pilanesberg) in a reserve of similar size, and 43% less than elephants in the smaller Phinda reserve. We found mixed support for the temporal refuge hypothesis; home range sizes in the iSimangaliso population did not differ by day compared to nighttime, but elephants used areas within their home ranges differently between day and night. Elephants in all three reserves generally selected forest and woodland habitats over grasslands, but elephants in iSimangaliso selected exotic forest plantations over native habitat types. Our findings suggest that chronic stress is associated with restricted space use and altered habitat preferences that resemble a facultative refuge behavioral response. Elephants can maintain elevated FGM levels for ≥6 years following translocation, during which they exhibit refuge behavior that is likely a result of human disturbance and habitat conditions. Wildlife managers planning to translocate animals, or to initiate other management activities that could result in chronic stress responses, should consider the potential for, and consequences of, refuge behavior
    corecore