31 research outputs found

    The globular cluster VVV CL002 falling down to the hazardous Galactic centre

    Get PDF
    © 2024 The Author(s). Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Context. The Galactic centre is hazardous for stellar clusters because of the strong tidal force in action there. It is believed that many clusters were destroyed there and contributed stars to the crowded stellar field of the bulge and the nuclear stellar cluster. However, the development of a realistic model to predict the long-term evolution of the complex inner Galaxy has proven difficult, and observations of surviving clusters in the central region would provide crucial insights into destruction processes. Aims: Among the known Galactic globular clusters, VVV CL002 is the closest to the centre, at 0.4 kpc, but has a very high transverse velocity of 400 km s−1. The nature of this cluster and its impact on Galactic astronomy need to be addressed with spectroscopic follow up. Methods: Here we report the first measurements of its radial velocity and chemical abundance based on near-infrared high-resolution spectroscopy. Results: We find that this cluster has a counter-rotating orbit constrained within 1.0 kpc of the centre, and as close as 0.2 kpc at the perigalacticon, confirming that the cluster is not a passerby from the halo but a genuine survivor enduring the harsh conditions of the tidal forces of the Galactic mill. In addition, its metallicity and α abundance ([α/Fe] ≃ +0.4 and [Fe/H] = −0.54) are similar to those of some globular clusters in the bulge. Recent studies suggest that stars with such α-enhanced stars were more common at 3-6 kpc from the centre around 10 Gyr ago. Conclusions: We infer that VVV CL002 was formed outside but is currently falling down to the centre, showcasing a real-time event that must have occurred to many clusters a long time ago.Peer reviewe

    The kinetochore receptor for the cohesin loading complex

    Get PDF
    Summary The ring-shaped cohesin complex brings together distant DNA domains to maintain, express, and segregate the genome. Establishing specific chromosomal linkages depends on cohesin recruitment to defined loci. One such locus is the budding yeast centromere, which is a paradigm for targeted cohesin loading. The kinetochore, a multiprotein complex that connects centromeres to microtubules, drives the recruitment of high levels of cohesin to link sister chromatids together. We have exploited this system to determine the mechanism of specific cohesin recruitment. We show that phosphorylation of the Ctf19 kinetochore protein by a conserved kinase, DDK, provides a binding site for the Scc2/4 cohesin loading complex, thereby directing cohesin loading to centromeres. A similar mechanism targets cohesin to chromosomes in vertebrates. These findings represent a complete molecular description of targeted cohesin loading, a phenomenon with wide-ranging importance in chromosome segregation and, in multicellular organisms, transcription regulation

    Ultraviolet exposure has an epigenetic effect on a Batesian mimetic trait in the butterfly Papilio polytes

    Get PDF
    Wing polymorphism of butterflies provides a good system in which to study adaptation. The Asian Batesian mimic butterfly Papilio polytes has unmelanized, putative mimetic red spots on its black hind wings. The size of those red spots is non-heritable but it is highly polymorphic, the adaptive significance of which is unknown. We hypothesized that under strong ultraviolet (UV) irradiation, butterflies develop a wider melanized black area to protect the wings from UV damage, and as a result express smaller mimetic red spots. Our field survey on Okinawa Island revealed a negative relationship between the sizes of the red spot and the black area in the wings. The size varied seasonally and was negatively correlated with the intensity of solar UV radiation at the time of capture. Laboratory experiments revealed that the size was reduced by strong UV irradiation not only of the eggs and larvae, but also of their mothers through a putative epigenetic mechanism. The flexible phenotypic expression of the red spots in P. polytes suggests a trade-off between protection against UV damage and predation avoidance, and provides a new insight into the evolution of Batesian mimicry

    Rapid evolution of a Batesian mimicry trait in a butterfly responding to arrival of a new model

    Get PDF
    Batesian mimicry, a phenomenon in which harmless organisms resemble harmful or unpalatable species, has been extensively studied in evolutionary biology. Model species may differ from population to population of a single mimetic species, so different predation pressures might have driven micro-evolution towards better mimicry among regions. However, there is scant direct evidence of micro-evolutionary change over time in mimicry traits. Papilio polytes shows female-limited Batesian mimicry. On Okinawa, one mimicry model is Pachliopta aristolochiae, which was not present on the island until 1993. In P. polytes, the size of the hind-wing white spot, a mimetic trait, is maternally heritable. Among specimens collected between 1961 and 2016, the average white spot size was unchanged before the model’s arrival but has rapidly increased since then. However, white spot size showed greater variance after the model’s establishment than before. This suggests that before 1993, white spot size in this population was not selectively neutral but was an adaptive trait for mimicking an unpalatable native, Byasa alcinous, which looks like P. aristolochiae apart from the latter’s hind-wing white spot. Thus, some females switched their model to the new one after its arrival
    corecore