151 research outputs found
Conflict resolution in socially housed Sumatran orangutans (Pongo abelii)
Background
Peaceful conflict resolution strategies have been identified as effective mechanisms for minimising the potential costs of group life in many gregarious species, especially in primates. The knowledge of conflict-management in orangutans, though, is still extremely limited. Given their semi-solitary lives in the wild, there seems to be barely a need for orangutans to apply conflict management strategies other than avoidance. However, because of the rapid loss of orangutan habitat due to deforestation, opportunities to prevent conflicts by dispersion are shrinking. Additionally, more and more orangutans are brought into rehabilitation centres where they are bound to live in close contact with conspecifics. This raises the questions of whether and how orangutans are able to cope with conflicts, which are inevitably connected with group life.
Methods
Observational zoo-studies provide a valuable method to investigate such potential: in zoos, orangutans usually live in permanent groups and face the challenges of group life every day. Therefore, we observed a group of six socially-housed Sumatran orangutans at the Dortmund Zoo, Germany, both in their spacious outdoor enclosure in the summer and in the less spacious indoor enclosure in the winter. During 157.5 h of observation, we collected data on aggressive interactions, third-party interventions and post-conflict affiliations. We applied the post-conflict/matched-control observation (PC/MC) and the time rule method to investigate the occurrence of reconciliation and post-conflict third-party affiliations.
Results
We recorded a total of 114 aggressive interactions (including conflicts in the context of weaning and of male sexual coercion). As expected, we found an increase of both open conflicts and peaceful conflict resolution under less spacious conditions. In accordance with previous reports, we observed interventions by initially uninvolved individuals. Whereas we found no clear evidence for post-conflict third-party affiliations, we were able to demonstrate the occurrence of reconciliation among orangutans.
Discussion
Notwithstanding the small sample size and the explorative character of our study, we found evidence that orangutans possess a potential for prosocial conflict resolution. When living in groups and under conditions in which dispersion is no longer an option, orangutans are capable to flexibly apply strategies of conflict resolution to cease open conflicts and to repair the potential social damage of aggressive interactions. These strategies are similar to those of other great apes
Extracellular IgC2 Constant Domains of CEACAMs Mediate PI3K Sensitivity during Uptake of Pathogens
Several pathogenic bacteria utilize receptors of the CEACAM family to attach to human cells. Binding to different members of this receptor family can result in uptake of the bacteria. Uptake of Neisseria gonorrhoeae, a gram-negative human pathogen, via CEACAMs found on epithelial cells, such as CEACAM1, CEA or CEACAM6, differs mechanistically from phagocytosis mediated by CEACAM3, a CEACAM family member expressed selectively by human granulocytes.We find that CEACAM1- as well as CEACAM3-mediated bacterial internalization are accompanied by a rapid increase in phosphatidylinositol-3,4,5 phosphate (PI(3,4,5)P) at the site of bacterial entry. However, pharmacological inhibition of phosphatidylinositol-3' kinase (PI3K) selectively affects CEACAM1-mediated uptake of Neisseria gonorrhoeae. Accordingly, overexpression of the PI(3,4,5)P phosphatase SHIP diminishes and expression of a constitutive active PI3K increases CEACAM1-mediated internalization of gonococci, without influencing uptake by CEACAM3. Furthermore, bacterial uptake by GPI-linked members of the CEACAM family (CEA and CEACAM6) and CEACAM1-mediated internalization of N. meningitidis by endothelial cells require PI3K activity. Sensitivity of CEACAM1-mediated uptake toward PI3K inhibition is independent of receptor localization in cholesterol-rich membrane microdomains and does not require the cytoplasmic or the transmembrane domain of CEACAM1. However, PI3K inhibitor sensitivity requires the Ig(C2)-like domains of CEACAM1, which are also present in CEA and CEACAM6, but which are absent from CEACAM3. Accordingly, overexpression of CEACAM1 Ig(C2) domains blocks CEACAM1-mediated internalization.Our results provide novel mechanistic insight into CEACAM1-mediated endocytosis and suggest that epithelial CEACAMs associate in cis with other membrane receptor(s) via their extracellular domains to trigger bacterial uptake in a PI3K-dependent manner
The proximate regulation of prosocial behaviour: towards a conceptual framework for comparative research
Humans and many other animal species act in ways that benefit others. Such prosocial behaviour has been studied extensively across a range of disciplines over the last decades, but findings to date have led to conflicting conclusions about prosociality across and even within species. Here, we present a conceptual framework to study the proximate regulation of prosocial behaviour in humans, non-human primates and potentially other animals. We build on psychological definitions of prosociality and spell out three key features that need to be in place for behaviour to count as prosocial: benefitting others, intentionality, and voluntariness. We then apply this framework to review observational and experimental studies on sharing behaviour and targeted helping in human children and non-human primates. We show that behaviours that are usually subsumed under the same terminology (e.g. helping) can differ substantially across and within species and that some of them do not fulfil our criteria for prosociality. Our framework allows for precise mapping of prosocial behaviours when retrospectively evaluating studies and offers guidelines for future comparative work
Susceptibility of adult cat fleas (Siphonaptera: Pulicidae) to insecticides and status of insecticide resistance mutations at the Rdl and knockdown resistance loci
This is an Open Access article. © 2015 The Author(s). Published by Springer Berlin Heidelberg.The susceptibility of 12 field-collected isolates and 4 laboratory strains of cat fleas, Ctenocephalides felis was determined by topical application of some of the insecticides used as on-animal therapies to control them. In the tested field-collected flea isolates the LD50 values for fipronil and imidacloprid ranged from 0.09 to 0.35 ng/flea and 0.02 to 0.19 ng/flea, respectively, and were consistent with baseline figures published previously. The extent of variation in response to four pyrethroid insecticides differed between compounds with the LD50 values for deltamethrin ranging from 2.3 to 28.2 ng/flea, etofenprox ranging from 26.7 to 86.7 ng/flea, permethrin ranging from 17.5 to 85.6 ng/flea, and d-phenothrin ranging from 14.5 to 130 ng/flea. A comparison with earlier data for permethrin and deltamethrin implied a level of pyrethroid resistance in all isolates and strains. LD50 values for tetrachlorvinphos ranged from 20.0 to 420.0 ng/flea. The rdl mutation (conferring target-site resistance to cyclodiene insecticides) was present in most field-collected and laboratory strains, but had no discernible effect on responses to fipronil, which acts on the same receptor protein as cyclodienes. The kdr and skdr mutations conferring target-site resistance to pyrethroids but segregated in opposition to one another, precluding the formation of genotypes homozygous for both mutations.Peer reviewedFinal Published versio
Mutational Spectrum of the ABCA12 Gene and Genotype-Phenotype Correlation in a Cohort of 64 Patients with Autosomal Recessive Congenital Ichthyosis
Autosomal recessive congenital ichthyosis (ARCI) is a non-syndromic congenital disorder of cornification characterized by abnormal scaling of the skin. The three major phenotypes are lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. ARCI is caused by biallelic mutations in ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, PNPLA1, SDR9C7, SULT2B1, and TGM1. The most severe form of ARCI, harlequin ichthyosis, is caused by mutations in ABCA12. Mutations in this gene can also lead to congenital ichthyosiform erythroderma or lamellar ichthyosis. We present a large cohort of 64 patients affected with ARCI carrying biallelic mutations in ABCA12. Our study comprises 34 novel mutations in ABCA12, expanding the mutational spectrum of ABCA12-associated ARCI up to 217 mutations. Within these we found the possible mutational hotspots c.4541G>A, p.(Arg1514His) and c.4139A>G, p.(Asn1380Ser). A correlation of the phenotype with the effect of the genetic mutation on protein function is demonstrated. Loss-of-function mutations on both alleles generally result in harlequin ichthyosis, whereas biallelic missense mutations mainly lead to CIE or LI
Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients
The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations
Brain structure and function: a multidisciplinary pipeline to study hominoid brain evolution
To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains
Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology
The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat. The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites. Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates. Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments.Output Status: Forthcoming/Available Online Additional authors: Richard McElreath, Alfred Anwander, Philipp Gunz, Markus Morawski, Angela D. Friederici, Nikolaus Weiskopf, Fabian H. Leendertz, Roman M. Wittig EBC Cosortium: Karoline Albig, Bala Amarasekaran, Sam Angedakin, Alfred Anwander, Daniel Aschoff, Caroline Asiimwe, Laurent Bailanda, Jacinta C. Beehner, Raphael Belais, Thore J. Bergman, Birgit Blazey, Andreas Bernhard, Christian Bock, Pénélope Carlier, Julian Chantrey, Catherine Crockford, Tobias Deschner, Ariane Düx1, Luke Edwards, Cornelius Eichner, Géraldine Escoubas2, Malak Ettaj, Karina Flores, Richard Francke, Angela D. Friederici, Cédric Girard-Buttoz, Jorge Gomez Fortun, Zoro Bertin GoneBi, Tobias Gräßle, Eva Gruber-Dujardin, Philipp Gunz, Jess Hartel, Daniel B. M. Haun, Michael Henshall, Catherine Hobaiter, Noémie Hofman, Jenny E. Jaffe, Carsten Jäger, Anna Jauch, Stomy Kahemere, Evgeniya Kirilina, Robert Klopfleisch, Tobias Knauf-Witzens, Kathrin S. Kopp, Guy Landry Mamboundou Kouima, Bastian Lange, Kevin Langergraber, Arne Lawrenz, Fabian H. Leendertz, Ilona Lipp, Matys Liptovszky, Tobias Loubser Theron, Christelle Patricia Lumbu, Patrice Makouloutou Nzassi, Kerstin Mätz-Rensing, Richard McElreath, Matthew McLennan, Zoltan Mezö, Sophie Moittie, Torsten Møller, Markus Morawski, David Morgan, Timothy Mugabe, Martin Muller, Matthias Müller, Inoussa Njumboket, Karin Olofsson-Sannö, Alain Ondzie, Emily Otali, Michael Paquette, Simone Pika, Kerrin Pine, Andrea Pizarro, Kamilla Pléh, Jessica Rendel, Sandra Reichler-Danielowski, Martha M. Robbins, Alejandra Romero Forero, Konstantin Ruske, Liran Samuni, Crickette Sanz, André Schüle, Ingo Schwabe, Katarina Schwalm, Sheri Speede, Lara Southern, Jonas Steiner, Marc Stidworthy, Martin Surbeck, Claudia Szentiks, Tanguy Tanga, Reiner Ulrich, Steve Unwin, Erica van de Waal, Sue Walker, Nikolaus Weiskopf, Gudrun Wibbelt, Roman M. Wittig, Kim Wood, Klaus Zuberbühle
Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology
The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat. The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites. Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates. Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments
- …