47 research outputs found

    A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers

    Get PDF
    The azanucleosides azacitidine and decitabine are currently used for the treatment of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) in patients not only eligible for intensive chemotherapy but are also being explored in other hematologic and solid cancers. Based on their capacity to interfere with the DNA methylation machinery, these drugs are also referred to as hypomethylating agents (HMAs). As DNA methylation contributes to epigenetic regulation, azanucleosides are further considered to be among the first true "epigenetic drugs" that have reached clinical application. However, intriguing new evidence suggests that DNA hypomethylation is not the only mechanism of action for these drugs. This review summarizes the experience from more than 10 years of clinical practice with azanucleosides and discusses their molecular actions, including several not related to DNA methylation. A particular focus is placed on possible causes of primary and acquired resistances to azanucleoside treatment. We highlight current limitations for the success and durability of azanucleoside-based therapy and illustrate that a better understanding of the molecular determinants of drug response holds great potential to overcome resistance

    Prognostic value of indoleamine 2,3 dioxygenase in patients with higher‐risk myelodysplastic syndromes treated with azacytidine

    Get PDF
    Hypomethylating agents (HMAs) are widely used in patients with higher‐risk myelodysplastic syndromes (MDS) not eligible for stem cell transplantation; however, the response rate is <50%. Reliable predictors of response are still missing, and it is a major challenge to develop new treatment strategies. One current approach is the combination of azacytidine (AZA) with checkpoint inhibitors; however, the potential benefit of targeting the immunomodulator indoleamine‐2,3‐dioxygenase (IDO‐1) has not yet been evaluated. We observed moderate to strong IDO‐1 expression in 37% of patients with high‐risk MDS. IDO‐1 positivity was predictive of treatment failure and shorter overall survival. Moreover, IDO‐1 positivity correlated inversely with the number of infiltrating CD8+ T cells, and IDO‐1+ patients failed to show an increase in CD8+ T cells under AZA treatment. In vitro experiments confirmed tryptophan catabolism and depletion of CD8+ T cells in IDO‐1+ MDS, suggesting that IDO‐1 expression induces an immunosuppressive microenvironment in MDS, thereby leading to treatment failure under AZA treatment. In conclusion, IDO‐1 is expressed in more than one‐third of patients with higher‐risk MDS, and is predictive of treatment failure and shorter overall survival. Therefore, IDO‐1 is emerging as a promising predictor and therapeutic target, especially for combination therapies with HMAs or checkpoint inhibitors

    Bone marrow mesenchymal stromal cell-derived extracellular matrix displays altered glycosaminoglycan structure and impaired functionality in Myelodysplastic Syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) comprise a heterogeneous group of hematologic malignancies characterized by clonal hematopoiesis, one or more cytopenias such as anemia, neutropenia, or thrombocytopenia, abnormal cellular maturation, and a high risk of progression to acute myeloid leukemia. The bone marrow microenvironment (BMME) in general and mesenchymal stromal cells (MSCs) in particular contribute to both the initiation and progression of MDS. However, little is known about the role of MSC-derived extracellular matrix (ECM) in this context. Therefore, we performed a comparative analysis of in vitro deposited MSC-derived ECM of different MDS subtypes and healthy controls. Atomic force microscopy analyses demonstrated that MDS ECM was significantly thicker and more compliant than those from healthy MSCs. Scanning electron microscopy showed a dense meshwork of fibrillar bundles connected by numerous smaller structures that span the distance between fibers in MDS ECM. Glycosaminoglycan (GAG) structures were detectable at high abundance in MDS ECM as white, sponge-like arrays on top of the fibrillar network. Quantification by Blyscan assay confirmed these observations, with higher concentrations of sulfated GAGs in MDS ECM. Fluorescent lectin staining with wheat germ agglutinin and peanut agglutinin demonstrated increased deposition of N-acetyl-glucosamine GAGs (hyaluronan (HA) and heparan sulfate) in low risk (LR) MDS ECM. Differential expression of N-acetyl-galactosamine GAGs (chondroitin sulfate, dermatan sulfate) was observed between LR- and high risk (HR)-MDS. Moreover, increased amounts of HA in the matrix of MSCs from LR-MDS patients were found to correlate with enhanced HA synthase 1 mRNA expression in these cells. Stimulation of mononuclear cells from healthy donors with low molecular weight HA resulted in an increased expression of various pro-inflammatory cytokines suggesting a contribution of the ECM to the inflammatory BMME typical of LR-MDS. CD34+ hematopoietic stem and progenitor cells (HSPCs) displayed an impaired differentiation potential after cultivation on MDS ECM and modified morphology accompanied by decreased integrin expression which mediate cell-matrix interaction. In summary, we provide evidence for structural alterations of the MSC-derived ECM in both LR- and HR-MDS. GAGs may play an important role in this remodeling processes during the malignant transformation which leads to the observed disturbance in the support of normal hematopoiesis

    The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma

    Get PDF
    The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM

    Bridging Strategies to Allogeneic Transplant for Older AML Patients

    No full text
    Treatment options for older patients with intermediate or high-risk acute myeloid leukemia (AML) remain unsatisfactory. Allogeneic stem cell transplantation, the treatment of choice for the majority of younger AML patients, has been hampered in elderly patients by higher treatment related mortality, comorbidities and lack of a suitable donor. With the higher availability of suitable donors as well as of reduced intensity conditioning regimens, novel low intensity treatments prior to transplantation and optimized supportive care, the number of older AML patients being successfully transplanted is steadily increasing. Against this background, we review current treatment strategies for older AML patients planned for allogeneic stem cell transplantation based on clinical trial data, discussing differences between approaches with advantages and pitfalls of each. We summarize pre-treatment considerations that need to be taken into account in this highly heterogeneous older population. Finally, we offer an outlook on areas of ongoing clinical research, including novel immunotherapeutic approaches that may improve access to curative therapies for a larger number of older AML patients

    A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers

    No full text
    The azanucleosides azacitidine and decitabine are currently used for the treatment of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) in patients not only eligible for intensive chemotherapy but are also being explored in other hematologic and solid cancers. Based on their capacity to interfere with the DNA methylation machinery, these drugs are also referred to as hypomethylating agents (HMAs). As DNA methylation contributes to epigenetic regulation, azanucleosides are further considered to be among the first true "epigenetic drugs" that have reached clinical application. However, intriguing new evidence suggests that DNA hypomethylation is not the only mechanism of action for these drugs. This review summarizes the experience from more than 10 years of clinical practice with azanucleosides and discusses their molecular actions, including several not related to DNA methylation. A particular focus is placed on possible causes of primary and acquired resistances to azanucleoside treatment. We highlight current limitations for the success and durability of azanucleoside-based therapy and illustrate that a better understanding of the molecular determinants of drug response holds great potential to overcome resistance

    Polycomb protein RING1A limits hematopoietic differentiation in myelodysplastic syndromes

    Get PDF
    Altres ajuts: This project was supported by grants from Deutsche JosĂ© Carreras Leukaemie Stiftung DJCLS R 14/16 (KSG and MB), Radiumhemmets forskningsfonder, the Swedish Cancer foundation and the Swedish Research council (AL), German Cancer Consortium DKTK (AKG), the German Research Council DFG FOR2033 Go 713/2-1 and SFB 1243 A09 (KSG). Research in the Buschbeck lab is further supported by AFM-TĂ©lĂ©thon (AFM-18738), the Marie SkƂodowska Curie Training network 'ChroMe' (H2020-MSCAITN-2015-675610), and AGAUR (2014-SGR-35). Research at the IJC is supported by the 'La Caixa' Foundation, the FundaciĂł Internacional Josep Carreras, Celgene Spain and the CERCA Programme / Generalitat de Catalunya.Genetic lesions affecting epigenetic regulators are frequent in myelodysplastic syndromes (MDS). Polycomb proteins are key epigenetic regulators of differentiation and stemness that act as two multimeric complexes termed polycomb repressive complexes 1 and 2, PRC1 and PRC2, respectively. While components and regulators of PRC2 such as ASXL1 and EZH2 are frequently mutated in MDS and AML, little is known about the role of PRC1. To analyze the role of PRC1, we have taken a functional approach testing PRC1 components in loss- and gain-of-function experiments that we found overexpressed in advanced MDS patients or dynamically expressed during normal hematopoiesis. This approach allowed us to identify the enzymatically active component RING1A as the key PRC1 component in hematopoietic stem cells and MDS. Specifically, we found that RING1A is expressed in CD34 + bone marrow progenitor cells and further overexpressed in high-risk MDS patients. Knockdown of RING1A in an MDS-derived AML cell line facilitated spontaneous and retinoic acid-induced differentiation. Similarly, inactivation of RING1A in primary CD34 + cells augmented erythroid differentiation. Treatment with a small compound RING1 inhibitor reduced the colony forming capacity of CD34 + cells from MDS patients and healthy controls. In MDS patients higher RING1A expression associated with an increased number of dysplastic lineages and blasts. Our data suggests that RING1A is deregulated in MDS and plays a role in the erythroid development defect
    corecore