603 research outputs found

    Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?

    Get PDF
    Abstract The Sun and its solar wind are currently exhibiting extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity between cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small solar energetic particle events. We use observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter to examine the implications of these highly unusual solar conditions for human space exploration. We show that while these conditions are not a show stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits mission durations. While solar energetic particle events in cycle 24 present some hazard, the accumulated doses for astronauts behind 10 g/cm2 shielding are well below current dose limits. Galactic cosmic radiation presents a more significant challenge: the time to 3% risk of exposure-induced death (REID) in interplanetary space was less than 400 days for a 30 year old male and less than 300 days for a 30 year old female in the last cycle 23–24 minimum. The time to 3% REID is estimated to be ∌20% lower in the coming cycle 24–25 minimum. If the heliospheric magnetic field continues to weaken over time, as is likely, then allowable mission durations will decrease correspondingly. Thus, we estimate exposures in extreme solar minimum conditions and the corresponding effects on allowable durations

    MAPPIN'SDM – The Multifocal Approach to Sharing in Shared Decision Making

    Get PDF
    BACKGROUND: The wide scale permeation of health care by the shared decision making concept (SDM) reflects its relevance and advanced stage of development. An increasing number of studies evaluating the efficacy of SDM use instruments based on various sub-constructs administered from different viewpoints. However, as the concept has never been captured in operable core definition it is quite difficult to link these parts of evidence. This study aims at investigating interrelations of SDM indicators administered from different perspectives. METHOD: A comprehensive inventory was developed mapping judgements from different perspectives (observer, doctor, patient) and constructs (behavior, perception) referring to three units (doctor, patient, doctor-patient-dyad) and an identical set of SDM-indicators. The inventory adopted the existing approaches, but added additional observer foci (patient and doctor-patient-dyad) and relevant indicators hitherto neglected by existing instruments. The complete inventory comprising a doctor-patient-questionnaire and an observer-instrument was applied to 40 decision consultations from 10 physicians from different medical fields. Convergent validities were calculated on the basis of Pearson correlation coefficients. RESULTS: Reliabilities for all scales were high to excellent. No correlations were found between observer and patients or physicians neither for means nor for single items. Judgements of doctors and patients were moderately related. Correlations between the observer scales and within the subjective perspectives were high. Inter-perspective agreement was not related to SDM performance or patient activity. CONCLUSION: The study demonstrates the contribution to involvement made by each of the relevant perspectives and emphasizes the need for an inter-subjective approach regarding SDM measurement

    Patients' and Observers' Perceptions of Involvement Differ. Validation Study on Inter-Relating Measures for Shared Decision Making

    Get PDF
    OBJECTIVE: Patient involvement into medical decisions as conceived in the shared decision making method (SDM) is essential in evidence based medicine. However, it is not conclusively evident how best to define, realize and evaluate involvement to enable patients making informed choices. We aimed at investigating the ability of four measures to indicate patient involvement. While use and reporting of these instruments might imply wide overlap regarding the addressed constructs this assumption seems questionable with respect to the diversity of the perspectives from which the assessments are administered. METHODS: The study investigated a nested cohort (N = 79) of a randomized trial evaluating a patient decision aid on immunotherapy for multiple sclerosis. Convergent validities were calculated between observer ratings of videotaped physician-patient consultations (OPTION) and patients' perceptions of the communication (Shared Decision Making Questionnaire, Control Preference Scale & Decisional Conflict Scale). RESULTS: OPTION reliability was high to excellent. Communication performance was low according to OPTION and high according to the three patient administered measures. No correlations were found between observer and patient judges, neither for means nor for single items. Patient report measures showed some moderate correlations. CONCLUSION: Existing SDM measures do not refer to a single construct. A gold standard is missing to decide whether any of these measures has the potential to indicate patient involvement. PRACTICE IMPLICATIONS: Pronounced heterogeneity of the underpinning constructs implies difficulties regarding the interpretation of existing evidence on the efficacy of SDM. Consideration of communication theory and basic definitions of SDM would recommend an inter-subjective focus of measurement. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN25267500

    A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array

    Get PDF
    We present the discovery and subarcsecond localization of a new fast radio burst (FRB) by the Karl G. Jansky Very Large Array (VLA) and realfast search system. The FRB was discovered on 2019 June 14 with a dispersion measure of 959 pc cm⁻³. This is the highest DM of any localized FRB and its measured burst fluence of 0.6 Jy ms is less than nearly all other FRBs. The source is not detected to repeat in 15 hr of VLA observing and 153 hr of CHIME/FRB observing. We describe a suite of statistical and data quality tests we used to verify the significance of the event and its localization precision. Follow-up optical/infrared photometry with Keck and Gemini associate the FRB with a pair of galaxies with r ∌ 23 mag. The false-alarm rate for radio transients of this significance that are associated with a host galaxy is roughly 3×10⁻⁎ hr⁻Âč. The two putative host galaxies have similar photometric redshifts of z_(phot) ∌ 0.6, but different colors and stellar masses. Comparing the host distance to that implied by the dispersion measure suggests a modest (~ 50 pc/cm⁻³) electron column density associated with the FRB environment or host galaxy/galaxies

    Measurement of the ppbar to ttbar production cross section at sqrt(s)=1.96 TeV in the fully hadronic decay channel

    Get PDF
    A measurement of the top quark pair production cross section in proton anti-proton collisions at an interaction energy of sqrt(s)=1.96 TeV is presented. This analysis uses 405 pb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. Fully hadronic ttbar decays with final states of six or more jets are separated from the multijet background using secondary vertex tagging and a neural network. The ttbar cross section is measured as sigma(ttbar)=4.5 -1.9 +2.0 (stat) -1.1 +1.4 (syst) +/- 0.3 (lumi) pb for a top quark mass of m(t) = 175 GeV/c^2.Comment: 10 pages, 10 figures, submitted to Phys. Rev.

    Search for R-parity violating supersymmetry via the LLE couplings lambda_{121}, lambda_{122} or lambda_{133} in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings lambda_121, lambda_122, or lambda_133 is presented. The data, corresponding to an integrated luminosity of L~360/pb, were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of sqrt(s)=1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mumul, and eetau (l=e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are derived in two supersymmetric models.Comment: 9 pages, 4 figures (fig2 includes 3 subfigures

    Search for W' boson production in the W'->tb decay channel

    Get PDF
    We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb^{-1} of data collected with the Dzero detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W' boson masses. We exclude masses between 200 GeV and 610 GeV for a W' boson with standard-model-like couplings, between 200 GeV and 630 GeV for a W' boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 GeV and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks.Comment: 9 pages, 6 figures, accepted by Phys. Lett.

    Search for Neutral Higgs Bosons Decaying to Tau Pairs in p-pbar Collisions at sqrt(s) = 1.96 TeV

    Full text link
    A search for the production of neutral Higgs bosons Phi decaying into tau^+tau^- final states in p-pbar collisions at a center-of-mass energy of 1.96 TeV is presented. The data, corresponding to an integrated luminosity of up to 348 pb^-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. Since no excess compared to the expectation from standard model processes is found, limits on the production cross section times branching ratio are set. The results are combined with those obtained from the D0 search for Phi b(b) to b-bbar-b(bbar) and are interpreted in the minimal supersymmetric standard model.Comment: Version accpeted by Phys. Rev. Lett. (minor changes

    Search for charged Higgs bosons decaying to top and bottom quarks in ppbar collisions

    Get PDF
    We describe a search for production of a charged Higgs boson, q \bar{q'} -> H^+, reconstructed in the t\bar{b} final state in the mass range 180 <= M_{H^+} <= 300 GeV. The search was undertaken at the Fermilab Tevatron collider with a center-of-mass energy sqrt{s} = 1.96 TeV and uses 0.9 fb^{-1} of data collected with the D0 detector. We find no evidence for charged Higgs boson production and set upper limits on the production cross section in the Types I, II and III two-Higgs-doublet models (2HDMs). An excluded region in the (M_{H^+},tan\beta) plane for Type I 2HDM is presented.Comment: Submitted to Phys. Rev. Letter
    • 

    corecore