130 research outputs found

    Multiscale mechanisms of cell migration during development: theory and experiment

    Get PDF
    Long-distance cell migration is an important feature of embryonic development, adult morphogenesis and cancer, yet the mechanisms that drive subpopulations of cells to distinct targets are poorly understood. Here, we use the embryonic neural crest (NC) in tandem with theoretical studies to evaluate model mechanisms of long-distance cell migration. We find that a simple chemotaxis model is insufficient to explain our experimental data. Instead, model simulations predict that NC cell migration requires leading cells to respond to long-range guidance signals and trailing cells to short-range cues in order to maintain a directed, multicellular stream. Experiments confirm differences in leading versus trailing NC cell subpopulations, manifested in unique cell orientation and gene expression patterns that respond to non-linear tissue growth of the migratory domain. Ablation experiments that delete the trailing NC cell subpopulation reveal that leading NC cells distribute all along the migratory pathway and develop a leading/trailing cellular orientation and gene expression profile that is predicted by model simulations. Transplantation experiments and model predictions that move trailing NC cells to the migratory front, or vice versa, reveal that cells adopt a gene expression profile and cell behaviors corresponding to the new position within the migratory stream. These results offer a mechanistic model in which leading cells create and respond to a cell-induced chemotactic gradient and transmit guidance information to trailing cells that use short-range signals to move in a directional manner

    The embryonic trunk neural crest microenvironment regulates the plasticity and invasion of human neuroblastoma via TrkB signaling

    Get PDF
    Mistakes in trunk neural crest (NC) cell migration may lead to birth defects of the sympathetic nervous system (SNS) and neuroblastoma (NB) cancer. Receptor tyrosine kinase B (TrkB) and its ligand BDNF critically regulate NC cell migration during normal SNS development and elevated expression of TrkB is correlated with high-risk NB patients. However, in the absence of a model with in vivo interrogation of human NB cell and gene expression dynamics, the mechanistic role of TrkB in NB disease progression remains unclear. Here, we study the functional relationship between TrkB, cell invasion and plasticity of human NB cells by taking advantage of our validated in vivo chick embryo transplant model. We find that LAN5 (high TrkB) and SHSY5Y (moderate TrkB) human NB cells aggressively invade host embryos and populate typical NC targets, however loss of TrkB function significantly reduces cell invasion. In contrast, NB1643 (low TrkB) cells remain near the transplant site, but over-expression of TrkB leads to significant cell invasion. Invasive NB cells show enhanced expression of genes indicative of the most invasive host NC cells. In contrast, transplanted human NB cells down-regulate known NB tumor initiating and stem cell markers. Human NB cells that remain within the dorsal neural tube transplant also show enhanced expression of cell differentiation genes, resulting in an improved disease outcome as predicted by a computational algorithm. These in vivo data support TrkB as an important biomarker and target to control NB aggressiveness and identify the chick embryonic trunk neural crest microenvironment as a source of signals to drive NB to a less aggressive state, likely acting at the dorsal neural tube

    DAN (NBL1) promotes collective neural crest migration by restraining uncontrolled invasion

    Get PDF
    Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. Here, we test the function of DAN, a BMP antagonist we detected by analysis of chick cranial mesoderm. Our analysis shows that, prior to neural crest cell exit from the hindbrain, DAN is expressed in the mesoderm, then it becomes absent along cell migratory pathways. Cranial neural crest and metastatic melanoma cells avoid DAN protein stripes in vitro. Addition of DAN reduces the speed of migrating cells, in vivo and in vitro respectively. In vivo loss-of-function of DAN results in enhanced neural crest cell migration by increasing speed and directionality. Computer model simulations support the hypothesis that DAN restrains cell migration by regulating cell speed. Taken together, our results identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion and promotes collective migration in a manner consistent with inhibition of BMP signaling

    The Neural Crest Migrating into the Twenty-First Century

    Get PDF
    From the initial discovery of the neural crest over 150 years ago to the seminal studies of Le Douarin and colleagues in the latter part of the twentieth century, understanding of the neural crest has moved from the descriptive to the experimental. Now, in the twenty-first century, neural crest research has migrated into the genomic age. Here, we reflect upon the major advances in neural crest biology and the open questions that will continue to make research on this incredible vertebrate cell type an important subject in developmental biology for the century to come

    Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion

    Get PDF
    Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest–placode interactions during trigeminal gangliogenesis
    • 

    corecore