44 research outputs found

    Environmentally realistic concentrations of chlorinated, brominated, and fluorinated persistent organic pollutants induce the unfolded protein response as a shared stress pathway in the liver of Atlantic cod (Gadus morhua)

    Get PDF
    In the North Sea and North Atlantic coastal areas, fish experience relatively high background levels of persistent organic pollutants. This study aimed to compare the mode of action of environmentally relevant concentrations of mixtures of halogenated compounds in Atlantic cod. Juvenile male cod with mean weight of 840 g were exposed by gavage to dietary mixtures of chlorinated (PCBs, DDT analogs, chlordane, lindane, and toxaphene), brominated (PBDEs), and fluorinated (PFOS) compounds for 4 weeks. One group received a combined mixture of all three compound groups. The results showed that the accumulated levels of chemicals in cod liver after 4 weeks of exposure reflected concentrations found in wild fish in this region. Pathway analysis revealed that the treatment effects by each of the three groups of chemicals (chlorinated, brominated, and fluorinated) converged on activation of the unfolded protein response (UPR). Upstream regulator analysis predicted that almost all the key transcription factors (XBP1, ERN1, ATF4, EIF2AK3, and NFE2L2) regulating the UPR were significantly activated. No additive effect was observed in cod co-treated with all three compound groups. In conclusion, the genome-wide transcriptomic study suggests that the UPR pathway is a sensitive common target of halogenated organic environmental pollutants in fish.publishedVersio

    Transcriptome responses in polar cod (Boreogadus saida) liver slice culture exposed to benzo[a]pyrene and ethynylestradiol: insights into anti-estrogenic effects

    Get PDF
    Polar cod (Boreogadus saida) is a key species in the arctic marine ecosystem vulnerable to effects of pollution, particularly from petroleum related activities. To facilitate studying the effects of those pollutants, we adapted a precision-cut liver slice culture protocol for this species. Using this system on board a research vessel, we studied gene expression in liver slice after exposure to the polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP), ethynylestradiol (EE2), and their mixtures, to map their molecular targets and examine possible anti-estrogenic effects of BaP. The exposure experiments were performed with BaP alone (0.1, 1, and 10 ÎĽM) or in combination with low concentrations of EE2 (5 nM) to mimic physiological estradiol levels in early vitellogenic female fish. Transcriptome analysis (RNA-seq) was performed after 72 h exposure in culture to map the genes and cellular pathways affected. The results provide a view of global transcriptome responses to BaP and EE2, which resulted in enrichment of many pathways such as the aryl hydrocarbon (Ahr) and estrogen receptor pathways. In the mixture exposure, BaP resulted in anti-estrogenic effects, shown by attenuation of EE2 activated transcription of many estrogen target genes. The results from this ex vivo experiment suggest that pollutants that activate the Ahr pathway such as the PAH compound BaP can result in anti-estrogenic effects that may lead to endocrine disruption in polar cod

    Xenobiotic metabolism and its physiological consequences in high-Antarctic Notothenioid fishes.

    Get PDF
    The Antarctic ecosystem is progressively exposed to anthropogenic contaminants, such as polycyclic aromatic hydrocarbons (PAHs). So far, it is largely unknown if PAHs leave a mark in the physiology of high-Antarctic fish. We approached this issue via two avenues: first, we examined the functional response of the aryl hydrocarbon receptor (Ahr), which is a molecular initiating event of many toxic effects of PAHs in biota. Chionodraco hamatus and Trematomus loennbergii served as representatives for high-Antarctic Notothenioids, and Atlantic cod, Gadus morhua as non-polar reference species. We sequenced and cloned the Ahr ligand binding domain (LBD) of the Notothenioids and deployed a GAL4-based luciferase reporter gene assay expressing the Ahr LBD. Benzo[a]pyrene (BaP), beta-naphthoflavone and chrysene were used as ligands for the reporter gene assay. Second, we investigated the energetic costs of Ahr activation in isolated liver cells of the Notothenioids during acute, non-cytotoxic BaP exposure. In the reporter assay, the Ahr LBD of Atlantic cod and the Antarctic Notothenioids were activated by the ligands tested herein. In the in vitro assays with isolated liver cells of high-Antarctic Notothenioids, BaP exposure had no effect on overall respiration, but caused shifts in the respiration dedicated to protein synthesis. Thus, our study demonstrated that high-Antarctic fish possess a functional Ahr that can be ligand-activated in a concentration-dependent manner by environmental contaminants. This is associated with altered cost for cellular protein synthesis. Future studies have to show if the toxicant-induced activation of the Ahr pathway may lead to altered organism performance of Antarctic fish. Supplementary Information The online version contains supplementary material available at 10.1007/s00300-021-02992-4

    Single PFAS and PFAS mixtures affect nuclear receptor- and oxidative stress-related pathways in precision-cut liver slices of Atlantic cod (Gadus morhua)

    Get PDF
    The aim of the present study was to investigate effects of per- and polyfluoroalkyl substances (PFAS), both single compounds and a mixture of these, using precision-cut liver slices (PCLS) from Atlantic cod (Gadus morhua). PCLS were exposed for 48 h to perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) (10, 50 and 100 μM), and three mixtures of these at equimolar concentrations (10, 50 and 100 μM). Transcriptomic responses were assessed using RNA sequencing. Among exposures to single PFAS, PFOS produced the highest number of differentially expressed genes (DEGs) compared to PFOA and PFNA (86, 25 and 31 DEGs, respectively). Exposure to the PFAS mixtures resulted in a markedly higher number of DEGs (841). Clustering analysis revealed that the expression pattern of the PFAS mixtures were more similar to PFOS compared to PFOA and PFNA, suggesting that effects induced by the PFAS mixtures may largely be attributed to PFOS. Pathway analysis showed significant enrichment of pathways related to oxidative stress, cholesterol metabolism and nuclear receptors in PFOS-exposed PCLS. Fewer pathways were significantly enriched following PFOA and PFNA exposure alone. Significantly enriched pathways following mixture exposure included lipid biosynthesis, cancer-related pathways, nuclear receptor pathways and oxidative stress-related pathways such as ferroptosis. The expression of most of the genes within these pathways was increased following PFAS exposure. Analysis of non-additive effects in the 100 μM PFAS mixture highlighted genes involved in the antioxidant response and membrane transport, among others, and the majority of these genes had synergistic expression patterns in the mixture. Nevertheless, 90% of the DEGs following mixture exposure showed additive expression patterns, suggesting additivity to be the major mixture effect. In summary, PFAS exposure promoted effects on cellular processes involved in oxidative stress, nuclear receptor pathways and sterol metabolism in cod PCLS, with the strongest effects observed following PFAS mixture exposure.publishedVersio

    Substituted Two- To Five-Ring Polycyclic Aromatic Compounds Are Potent Agonists of Atlantic Cod (Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic and bioavailable components found in petroleum and represent a high risk to aquatic organisms. The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other planar aromatic hydrocarbons, including certain PAHs. Ahr acts as a xenosensor and modulates the transcription of biotransformation genes in vertebrates, such as cytochrome P450 1A (cyp1a). Atlantic cod (Gadus morhua) possesses two Ahr proteins, Ahr1a and Ahr2a, which diverge in their primary structure, tissue-specific expression, ligand affinities, and transactivation profiles. Here, a luciferase reporter gene assay was used to assess the sensitivity of the Atlantic cod Ahrs to 31 polycyclic aromatic compounds (PACs), including two- to five-ring native PAHs, a sulfur-containing heterocyclic PAC, as well as several methylated, methoxylated, and hydroxylated congeners. Notably, most parent compounds, including naphthalene, phenanthrene, and partly, chrysene, did not act as agonists for the Ahrs, while hydroxylated and/or alkylated versions of these PAHs were potent agonists. Importantly, the greater potencies of substituted PAH derivatives and their ubiquitous occurrence in nature emphasize that more knowledge on the toxicity of these environmentally and toxicologically relevant compounds is imperative.publishedVersio

    PCB-126 spiked to polyethylene microplastic ingested by juvenile Atlantic cod (Gadus morhua) accumulates in liver and muscle tissues

    Get PDF
    In the present study, polyethylene (PE) microplastics (150–300 μm) were added to Atlantic cod (Gadus morhua) feeds at 1 %, either in their present form (Virgin PE) or spiked with PCB-126 (Spiked PE). The feeds were given to juvenile cod for a 4-week period. The fish grew from 11 to 23 g with no significant difference between dietary treatments. Cod fed spiked PE showed a significantly higher concentration of PCB-126 in liver and muscle samples compared to control and fish ingesting virgin PE. In accordance with the accumulation of PCB-126 in the liver, the expression of hepatic cyp1a was higher in cod fed spiked PE. Notably, we observed that spiked PE, as well as virgin PE, have an effect on skin. Overall changes indicated a reduced skin barrier in fish fed a diet containing PE. Indicating that PE itself through interaction with gut tissue may influence skin health in fish.PCB-126 spiked to polyethylene microplastic ingested by juvenile Atlantic cod (Gadus morhua) accumulates in liver and muscle tissuespublishedVersio

    The chemical defensome of five model teleost fish

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eide, M., Zhang, X., Karlsen, O. A., Goldstone, J., Stegeman, J., Jonassen, I., & Goksoyr, A. The chemical defensome of five model teleost fish. Scientific Reports, 11(1), (2021): 10546, https://doi.org/10.1038/s41598-021-89948-0.How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.The work was supported by the Norwegian Research Council as part of the iCOD and iCOD 2.0 projects (Grant Nos. 192441/I30 and 244654/E40), and the dCod 1.0 project (Grant No. 248840) which is part of Centre for Digital Life Norway. The American collaborators were funded by the National Institute of Health (USA) NIH P42ES007381 (Boston University Superfund Center to JJS and JVG), NIH R21HD073805 (JVG) and NHI R01ES029917 (JVG) grants. The Ocean Outlook exchange program funded the trans-Atlantic collaboration

    Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene

    Get PDF
    Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 μM) and BaP (0.1 μM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.publishedVersio

    Polycyclic aromatic hydrocarbons modulate the activity of Atlantic cod (Gadus morhua) vitamin D receptor paralogs in vitro

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goksoyr, S. O., Goldstone, J., Lille-Langoy, R., Lock, E.-J., Olsvik, P. A., Goksoyr, A., & Karlsen, O. A. Polycyclic aromatic hydrocarbons modulate the activity of Atlantic cod (Gadus morhua) vitamin D receptor paralogs in vitro. Aquatic Toxicology, 238, (2021): 105914, https://doi.org/10.1016/j.aquatox.2021.105914.Vitamin D receptor (VDR) mediates the biological function of the steroid hormone calcitriol, which is the metabolically active version of vitamin D. Calcitriol is important for a wide array of physiological functions, including calcium and phosphate homeostasis. In contrast to mammals, which harbor one VDR encoding gene, teleosts possess two orthologous vdr genes encoding Vdr alpha (Vdra) and Vdr beta (Vdrb). Genome mining identified the vdra and vdrb paralogs in the Atlantic cod (Gadus morhua) genome, which were further characterized regarding their phylogeny, tissue-specific expression, and transactivational properties induced by calcitriol. In addition, a selected set of polycyclic aromatic hydrocarbons (PAHs), including naphthalene, phenanthrene, fluorene, pyrene, chrysene, benzo[a]pyrene (BaP), and 7-methylbenzo[a]pyrene, were assessed for their ability to modulate the transcriptional activity of gmVdra and gmVdrb in vitro. Both gmVdra and gmVdrb were activated by calcitriol with similar potencies, but gmVdra produced significantly higher maximal fold activation. Notably, none of the tested PAHs showed agonistic properties towards the Atlantic cod Vdrs. However, binary exposures of calcitriol together with phenanthrene, fluorene, or pyrene, antagonized the activation of gmVdra, while chrysene and BaP significantly potentiated the calcitriol-mediated activity of both receptors. Homology modeling, solvent mapping, and docking analyses complemented the experimental data, and revealed a putative secondary binding site in addition to the canonical ligand-binding pocket (LBP). Calcitriol was predicted to interact with both binding sites, whereas PAHs docked primarily to the LBP. Importantly, our in vitro data suggest that PAHs can interact with the paralogous gmVdrs and interfere with their transcriptional activities, and thus potentially modulate the vitamin D signaling pathway and contribute to adverse effects of crude oil and PAH exposures on cardiac development and bone deformities in fish.This study was funded by the Research Council of Norway through the ”iCod 2.0: Integrative environmental genomics of Atlantic cod” project (project no. 244564) and the ”dCod 1.0: decoding systems toxicology of Atlantic cod” project (Center for Digital Life Norway project no. 248840)

    The Methylococcus capsulatus (Bath) Secreted Protein, MopE*, Binds Both Reduced and Oxidized Copper

    Get PDF
    Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (
    corecore