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Abstract

Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially
only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray
crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine
imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion
coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M.
capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic
Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds
Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the
strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A|| = 20 mT). Immobilized
metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in
forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper
uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties.
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Introduction

Copper is essential for most living organisms, and tight

homeostatic regulation of copper acquisition, distribution, and

use is generally required. Copper appears to play a central role in

the physiology of methanotrophs by controlling the ability of these

cells to utilize methane as their carbon and energy source (for

recent reviews see [1] and [2]). Methylococcus capsulatus (Bath)

belongs to a small subset of methanotrophs that can produce

a soluble methane monooxygenase (sMMO) in addition to the

membrane-bound copper enzyme particulate methane monoox-

ygenase (pMMO) [3,4]. These enzymes catalyze the oxidation of

methane to methanol, the initial and obligate step for carbon

fixation and energy production. One of the most important factors

controlling methanotrophic activity is the Cu-to-biomass ratio.

pMMO is dependent on copper availability of both Cu(I) and

Cu(II) for expression and catalytic activity [5]. sMMO, containing

a diiron active site, does not require copper for catalytic activity,

and is only produced when the copper level in the growth

environment is low.

Evidence suggests that methanotrophs have an active copper

uptake system [1,3,6], and thus their copper-homeostatic activity

differs from that of other prokaryotes in which systems handling

extra-cellular copper is mainly focused on detoxification and

elimination [7]. Methanobactin has been implicated in copper

sensing and uptake in several methanotrophs [8,9,10,11,12,13],

(reviewed in [1,14]). In the case of Methylosinus trichosporium OB3b,

there is ample evidence that this copper-binding siderophore-like

molecule is the (extracellular) component of a Cu uptake system

(reviewed in [1]). In M. capsulatus, both methanobactin and MopE

have been proposed to be involved in copper uptake

[1,14,15,16,17].

MopE consisting of 541 amino acids was first identified as one of

five outer membrane-associated proteins designated MopA-E [18].

Later it was found that MopE is expressed under copper limiting

conditions, and is both located on the cell surface (MopEC) and

secreted into the growth medium (MopE*). MopEC corresponds to

full-length MopE, while the secreted MopE* is truncated at the N-

terminus and contains only the last 336 amino acids of MopEC

(Fig. 1) [19]. The properties of MopE indicate that it may play

a role in copper homeostatic activities: It is cell surface located,

secreted to the medium, is down-regulated by copper and has

a high affinity for copper. In particular, quantitative analysis by

inductively coupled plasma mass spectrometry (ICP-MS) [20]

showed that MopE* purified from M. capsulatus (Bath) cells grown

in NMS medium without added copper ions (copper depleted
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medium) was found to contain about 0.6 copper ions per protein

molecule. The same ratio was estimated from the electron density

maps of the crystal structure of MopE* [20]. Competition

experiments using Bathocuproine, a copper chelator, indicated

that this copper ion was bound strongly to the protein

(Kd,10220M) [20]. The X-ray structures of wild type MopE*

[20] revealed that the wild type MopE* contained a partially

buried copper ion in a distorted tetrahedral site consisting of an

oxygen ligand from a water molecule, two histidine imidazoles

(His 132 and His203), and at the fourth position, the N1 atom of

kynurenine, an oxidation product of Trp130 [20]. These data

revealed for the first time the involvement of the tryptophan

metabolite kynurenine in a protein metal-binding site.

This study presents further evidence about the importance of

MopE* in copper uptake and handling in M. capsulatus (Bath). We

show by Electron Paramagnetic Resonance (EPR) and X-ray Near

Edge Absorption Spectroscopy (XANES) that MopE* binds both

reduced and oxidized copper ions. The strong copper binding site,

identified by crystal structure studies [20], binds copper in the

reduced (Cu(I)) state (Fig. S1), whereas two Cu(II) binding sites

have significantly lower affinities., i.e. in the mmolar range.

Immobilized metal ion affinity chromatography (IMAC) experi-

ments indicated that amino acid residues within the 24 first N-

terminal residues of MopE* are involved in defining these Cu(II)

binding site. Our results support the hypothesis that MopE plays

an important role in copper uptake, presumably utilizing both its

high Cu(I) and low Cu(II) affinity properties.

Experimental

Growth Conditions and Purification of MopE* from Spent
Medium

MopE* was purified using copper-free buffer consisting of

20 mM Tris pH 7,5 80 mM NaCl and 1 mM CaCl2 (20) as

described [20] from spent medium of M. capsulatus (Bath) strain

NCIMB 11132 grown in continuous cultures in nitrate mineral salt

(NMS) medium [21] without added copper [16]. The purity and

stability of purified MopE* was assessed by SDS/PAGE analysis

[22] using 10% (w / v) running gels and 3% (w / v) stacking gels.

Determination of Protein Concentration
The concentration of MopE* was determined by UV/VIS

spectroscopy using the absorbance at 280 nm. A UNICAM UV/

VIS UV2 spectrometer supplied with a 1 cm path length quartz

cuvette was used for the measurements. The molar extinction

coefficient for MopE* was estimated from its amino acid

composition to be 77475 cm21 by the ExPASy Protparam tool

(http://us.expasy.org/tools/protparam.html). Alternatively, the

concentration of MopE* was determined by ICP-MS, based on

the sulphur signal. The protein concentration of MopE* de-

termined by either ICP-MS or the absorbance at 280 nm differed

by less then 10%. Furthermore, analysis using solutions of BSA

(Sigma) and Beta lactoglobulin (Sigma) gave protein concentra-

tions based on ICP-MS data with an accuracy better than 90%

compared to the theoretical calculated concentrations.

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
The copper content of MopE* was determined by Inductively

Coupled Plasma Mass Spectrometry (ICP-MS) at the Center for

Element and Isotope Analyses (CEIA), University of Bergen,

Norway. Prior to analysis, the samples were hydrolysed with nitric

acid (6% v/v) overnight on a hotplate (110uC). A single collector

double focusing magnetic sector field ICP-MS spectrometer

(Finnigan Element 2) was used for the copper analyses. The

samples were diluted in 2% HNO3 and analysed by the standard

addition method using an ICP multi-element standard (Merck #
1.0580.0100) for calibration. Oyster Tissue Standard (NIST

1566a) was used as an external reference standard.

Electron Paramagnetic Resonance (EPR)
X-band EPR analyses of MopE* were performed with a Bruker

Elexsys 500 EPR spectrometer fitted with an Oxford ESR 900

helium flow cryostat, a Bruker ER4116DM dual mode cavity, or

a Super X kv319 cavity. The temperature was set to 33 K for the

Cu(II) titration, but some samples were examined between 4–77 K

using microwave powers from 1 microW up to 100 milliW. No

difference in microwave power saturation behaviour of the Cu(II)

EPR signals were detected at temperatures 33–77 K in presence of

different amounts added Cu(II) to MopE*. At ,77 K a cold finger

devise was used with an EPR tube immersed in liquid nitrogen. Each

experiment consisted of MopE* at a concentration of 360 mM in

a buffer consisting of 20 mM MOPS pH 7.5, 80 mM NaCl,

1 mM CaCl2, and the desired concentration of CuCl2, and samples

were incubated at 22uC for 10 min prior to freezing in liquid

nitrogen The operating parameters are given in the figure legends.

The concentration of EPR active copper in each experiment was

determined by double integration using the software WinEPR from

Bruker and comparison to either a 0.2 or 1 mM Cu(II) in

1 M HClO4 [23] or 0.2 or 1 mM Cu(II)EDTA complex as

standards under non microwave power saturating conditions.

X-Ray Absorption Spectroscopy (XAS) Data Collection
X-ray absorption data were collected in the fluorescence mode

at the copper K-edge at the Swiss Norwegian Beamlines (SNBL,

BM01b) using a 13 element Ge multi–channel detector. The

MopE* (0.7 mM) in buffer solution consisting of 20 mM MOPS

pH 7.5, 80 mM NaCl, 1 mM CaCl2 was filled in a Perspex

sample holder with kapton windows yielding a sample thickness of

2.5 mm. Spectra were measured with 5 eV steps below the edge,

0.2 eV steps in the edge region, and steps equivalent to 0.04 Å21

increments above the edge (region borders were 8960, 9030, and

9060 eV). Several XAS scans were collected and summed. All

Figure 1. Structural organization of the MopE protein.
doi:10.1371/journal.pone.0043146.g001
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XANES spectra were energy corrected against a copper-foil

calibration (8979 eV).

XAS Analysis
The XAS data were summed and background subtracted using

the Athena program [24]. The edge energy, Eo, was determined at

the first inflection point after the pre-edge using the derivative

spectra. The peak fitting procedures contained in the Athena

program were used to determine the pre-edge positions. For the

pre-edge peak fitting an arctangent function was used to model the

step portion of the data with the centroid value set to the Eo value

before refinements. The Eo value was determined as the first

inflection point after the pre-edge in all cases. The fitting range

was manually chosen, and then varied to give the optimal fit. The

pre-edge peak centroid was determined manually and then

refined. Both the Gaussian and Lorenztian functions were used,

but only the former gave conclusive fits.

XANES data were collected of Cu(I) oxide [25], Cu(I) diamine

([Cu(NH3)2]+) and Cu(II) tutton salt (Cu(NH4)2(SO4)2?6H2O) [26]

to use as references. The Cu(I) diamine solution was prepared

essentially as described in [27].

Copper Binding Experiments
Equilibrium dialysis. Dialysis of MopE* against various

concentrations of CuCl2 was conducted to investigate the binding

of Cu(II) under equilibrium conditions. Dialysis cassettes (molec-

ular-mass cut-off of 10 kDa), filled with 500 mL protein suspension

(10 mM), were placed into 100 mL of 20 mM Tris-HCl pH 7.5,

80 mM NaCl, 1 mM CaCl2 containing CuCl2 at concentrations

ranging from 0 to 100 mM. Dialysis was carried out over night at

4uC under constant stirring. The Cu concentrations inside and

outside the dialysis cassettes were determined by ICP-MS as

described above. The data were adjusted for copper bound to

MopE* in copper free buffer.

Immobilized metal ion affinity chromatography

(IMAC). A Chelating SepharoseTM Fast Flow kit (Amersham

Biosciences) was used according to the manufacturer’s description.

Cu(II) ions were immobilized on the Sepharose via iminodiacetic

acid (IDA), and a 0.5 ml column was charged with 0.2 M CuCl2
and equilibrated using 20 mM sodium phosphate buffer pH 6.8,

containing 0.5 M NaCl. Following the same procedure, columns

were also prepared using other metal ions, in particular Fe(II),

Fe(III), Ni(II), Zn(II), and Co(II). 1.5 ml of concentrated spent

medium from M. capsulatus was applied to each column; the flow

through collected, and the column washed with three column

volumes with 20 mM sodium phosphate buffer pH 6.8, containing

0.5 M NaCl and 1 mM CaCl2. Elution was performed using three

column volumes 20 mM sodium phosphate buffer pH 6.0,

containing 0.5 M NaCl and 1 mM CaCl2, followed by four

column volumes of the same buffer adjusted to pH 4.0. The

column retained its blue colour, indicating that the iminodiacetate-

bound copper has reasonable stability at pH 4.0 [28]. Alterna-

tively, elution could be performed using 100 mM imidazole. Both

the wash and elution fractions were analyzed by SDS-PAGE. A

degradation product of MopE* identified in the wash fractions was

characterized using N-terminal sequencing at the protein

sequencing facility at the University of Oslo.

Results

Cu(I) is Bound in a High Affinity Site of MopE
MopE was purified from spent media as described previously

(20). CaCl2 was included in the buffer, because during optimiza-

tion of the purification conditions we discovered that the presence

of calcium ions increased the stability of the protein by preventing

proteolytic degradation. The copper content of purified MopE*

was determined by ICP-MS to be 0.6 copper ions per protein

molecule. Prior to the EPR analysis MopE* was dialysed against

a MOPS buffer (20 mM MOPS pH 7.5, 80 mM NaCl and

1 mM CaCl2) since the pKa of Tris show a strong temperature

dependence [29] inducing freezing artefacts, and the EPR studies

were performed at low temperatures (4–77 K).

The EPR spectrum of purified MopE* (360 uM) in MOPS

buffer did not present any characteristic signal of Cu(II) without

added CuCl2, indicating that the copper bound to the purified

protein is in the Cu(I) state (Fig. 2B, curve i). We examined the

protein between 4K and 77K without detecting any EPR active

signal. The EPR spectrum of MopE* crystals (about 100–200

crystals in 200 ml 45% ammonium sulphate and 0.1 M Hepes

pH 7.5) was also recorded, and this showed no signal character-

istic for Cu(II). Oxidation attempts with 2 mM hydrogen peroxide

did not increase EPR active Cu(II) in MopE* in solution or

crystals, while 2.5% of nitric acid treatment of MopE* at room

temperature prior to EPR analysis generated an EPR active Cu(II)

signal. A maximum of 0.460.15 copper ions was recovered per

protein molecule in solution (Fig. 2C), supporting the presence of

copper as Cu(I) in the purified MopE*. It is possible that not all of

the Cu ions have been released from the protein or oxidized

during nitric acid treatment. This may explain the observed

discrepancy in the copper to protein ratio of 0.6 and 0.4 calculated

from the ICP-MS data and the EPR based quantification,

respectively.

The XANES analysis of MopE* was also in line with copper

being monovalent in the protein (Fig. 3). The position of the edge

energy gives information regarding the oxidation state [30].

MopE* exhibited a pre-edge feature at 8982.1 eV attributed to the

1s4p transition. The position of the feature is shifted to higher

energies compared to that seen for Cu(I) oxide, 8981.3 eV (Fig. 3),

and lower energies compared to that reported previously for Cu(I)

centres in methane monooxygenase (8983–84 eV) [5] and Cu+-

ATPases (8984 eV) [31]. However, the position of the pre-edge

feature is comparable to that of the Cu(I) model compound, Cu(I)

diamine in solution (8982.8 eV) (not shown). In addition (Fig. 3),

the edge position (8985 eV) is substantially lower than that

observed for the Cu(II) model compound Cu-tutton (8990–91 eV)

clearly supporting the presence of monovalent copper in the

MopE* protein. The intensity of the pre-edge feature at 8982 eV

is relatively low in MopE*, precluding a linear and two-coordinate

Cu(I) structure in the protein, thus suggesting either three or four

coordinate Cu(I) environments in the protein [30], in line with the

crystal structure of the protein [20].

MopE* has Two Cu(II) Binding Sites
The EPR spectra recorded of MopE* (with Cu(I) bound) when

incubated for 10 min at 22uC in MOPS buffer containing 1, 2, 4,

or 8 mol equivalents of CuCl2 are presented in Fig. 2B, lines ii–v.

For each titration point the total amount of EPR active Cu(II) was

calculated by comparing the double integral of the first-derivative

EPR signal to a standard consisting of 0.2 mM Cu(II) in

1 M HClO4. The total amount of EPR active Cu(II) was then

plotted as a function of the total amount of Cu(II) added to the

sample (inset Fig. 2B). Figure 2A shows the control spectrum of the

MOPS buffer with 1 mM CuCl2 at 77 K, showing no EPR signal.

Spectra of this sample were also recorded at 10 and 33 K and no

EPR signal could be observed (results not shown). This is

consistent with a report by the Van Doorslaer group, which

showed that EPR signals of 0.3 and 2 mM Cu(II) in MOPS buffer

could not be observed [32]. In water, dipolar broadening of Cu(II)

MopE* Binds Both Reduced and Oxidized Copper
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EPR spectra have been observed [33,34] and at a pH .7, EPR

silent aquo copper are readily formed [32,35]. Since MOPS

possesses no, or a very low, affinity for copper [36], these

observations may explain the lack of a Cu(II) EPR signal in the

control.

The EPR spectrum recorded after addition of one molar

equivalent of Cu(II) to MopE* is characteristic of a non-blue type

2 Cu (II) coordination environment with a single set of Cu(II)

hyperfine lines with well resolved nuclear spin I = 3/2 splitting

(Fig. 2B line ii and Fig. 4A), and since we could not observe a Cu(II)

EPR signal in our control spectrum of MOPS buffer with

1 mM CuCl2, this signal is most likely specific for Cu(II) binding

to MopE*. Integration of the spectrum revealed that 0.9 molar

equivalents of Cu(II) was EPR active and bound to MopE* (Fig. 2B

inset). After addition of two molar equivalents of Cu(II) to MopE*

a second overlapping spectrum with characteristics of a non-blue

type 2 Cu (II) coordination environment (Fig. 2B line iii and

Fig. 4B) is emerging, and increasing in intensity after addition of 4

molar equivalents of Cu (II) (Fig. 2B line iv). Only a slight increase

in the intensity is observed at 8 molar equivalents (Fig. 2B line v)

suggesting that binding of Cu(II) to MopE* is approaching near

saturation after addition of between 4 and 8 equivalents of Cu(II).

Integration of the latter three spectra revealed that 1.4, 2.1, and

2.2 molar of Cu(II) was bound to MopE* (Fig. 2B inset) after

addition of 2, 4 and 8 equivalents of Cu(II), respectively, and are

probably in equilibrium with EPR silent aqua copper complexes.

Visible inspection of the lowest magnetic field envelopes obtained

after addition of 4 and 8 molar equivalents of CuCl2 (Fig. 2B, line

iv–v), demonstrated broad possibly adventitious binding of Cu(II)

ions when compared to 2 mol equivalents of CuCl2. The latter

signal may possibly represent a third Cu(II) species (Fig. S2),

explaining why complete saturation of Cu(II) binding to MopE* is

not observed after addition of between 4 and 8 molar equivalents

of Cu(II). Due to the corresponding low binding affinity, this third

Cu(II) binding species is most likely of no, or low, relevance to the

biological function of the MopE protein.

Both of the Cu(II) signals (Fig. 4A and B) observed are of the

(nearly) axial type [37], showing a major axial derivative signal to

higher field at gH and a weaker derivative signal to lower field at

g|| with higher g value. Simulation of the spectra shows that the

stronger binding Cu(II) species in Fig. 4 A has g = 2.196, 2.06 and

2.04 and copper A|| = 20 mT and the resolved hyperfine

components along gH suggests the presence of three or four

nitrogen donors in the copper coordination. Including the values

obtained from the spectrum obtained at 77 K (see inset) in the

EPR envelope simulation, resulted in a fit resembling the

experimental data.

The second Cu(II) species (Fig. 4B) has g = 2.27, 2.04 and 2.04

and copper A|| = 16 mT. The two different Cu(II) EPR signals

did not show any major difference in their microwave power-

saturation behaviour (1 microW to 10 milliW), neither at 33 K nor

at 77 K, indicating that the two different Cu(II) were located far

apart (.10 Å) from each other in space (data not shown). The

present system can therefore be described as containing two

independent S =K spin centres.

The Cu(II) binding capacity of MopE*, was also investigated

under equilibrium conditions by dialysing purified protein against

a Tris buffer (20 mM Tris pH 7.5, 80 mM NaCl and

1 mM CaCl2) with various concentrations of CuCl2 between

0 and 100 mM. The amount of Cu(II) bound to MopE increased

Figure 2. EPR analysis of MopE*. A) EPR spectrum of Mops buffer
with 1 mM CuCl2. The spectrum was recorded at a temperature of 77 K
with a modulation frequency of 100 kHz, a modulation amplitude of
1.0 mT; and a time constant of 164 ms. The microwave frequency was
9.57 GHz, and the microwave power was 1 mW. B) EPR spectra of
MopE* (360 uM) as purified (i), and with 1, 2, 4, and 8 (ii–v) molar
equivalents of Cu(II) respectively. Copper was added as CuCl2 from
a freshly prepared solution in water. The spectra were recorded at 33 K,
a modulation frequency of 100 kHz, a modulation amplitude of 0.6 mT,
a time constant of 41 ms, a microwave frequency of 9.37 GHz, and
a microwave power of 0.1 mW. The inset shows EPR-detected Cu(II) as
a function of added Cu(II), demonstrating near saturation after addition
of 4 molar equivalents of Cu(II). C) EPR spectrum of MopE* after
treatment with 2.5% nitric acid. The spectrum was recorded at

a temperature of 27 K, a modulation amplitude of 0.6 mT, a time
constant of 40,960 ms, a microwave frequency of 9.39 GHz, and
a microwave power of 0.05 mW.
doi:10.1371/journal.pone.0043146.g002
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when more than 10 mM CuCl2 was included in the dialysis buffer,

and saturation was not achieved at 100 mM. The binding data

were consistent with binding of Cu(II) to more than one binding

site per MopE molecule, in agreement with the EPR titration data.

The binding constant of the strongest Cu(II) binding was estimated

to be in the micromolar range. (Figs. 5 and S3). Although

saturation of Cu(II) binding to MopE was not apparent in the

dialysis experiments, Scatchard plot analysis of the binding data

(Fig. S3) suggests that there exist 2 Cu(II) binding sites per MopE

molecule, which is consistent with the EPR titration data.

Specific Retention of MopE* on Cu(II) Charged Columns;
Amino Acid Residues at the N-terminal End of MopE*
may Contribute to the Binding of Cu(II) Ions

Metal binding studies were conducted using immobilized metal

affinity chromatography (IMAC). MopE* could bind to a column

charged with Cu(II) ions (Fig. 6), which is consistent with both the

EPR and equilibrium dialysis data. MopE*did not bind to IMAC

columns charged with either Fe(II), Fe(III), Ni(II), Zn(II), or Co(II),

suggesting that the binding is specific for Cu(II). The bound

protein could be eluted using either pH 4.0 or 100 mM imidazole

(Fig. 6), respectively). Interestingly, a MopE* degradation product

(indicated with an arrow in Fig. 6) lacking the first 24 N-terminal

amino acid residues was unable to bind to the Cu(II) charged

column, which may suggest that residues within this region are

involved in coordinating the Cu(II) ions.

Discussion

In this communication, we demonstrate that the M. capsulatus

secreted protein, MopE*, binds Cu(I) ions in a high affinity site

and (at least) two Cu(II) ions bind in weak(er) affinity sites.

The mope gene is expressed under limited copper conditions

[19], and MopE* is secreted into the growth medium as the 336

C-terminal amino acids domain of MopEC (see Fig. 1 for the

structural organization of MopE). After prolonged storage in

buffer solution, 24 amino acids were eventually lost from the N-

terminus of MopE* protein giving MopE*224 (Figs. 1 and 6), and

similarly, the 46 N-terminal amino acids were invisible in the

electron density maps, suggesting that the N-terminal region is

cleaved off during the crystallization process, giving MopE*246

[20] (Fig. 1). This is important to keep in mind when comparing

the data presented in the present work to those found with the

crystallized MopE* protein. During handling of MopE* in

solution, the presence of CaCl2 stabilized the protein sufficiently

for the time needed to perform the experiments presented in this

communication.

A competition experiment using Bathocuproine, indicated that

the copper ion identified in the crystal structure of MopE* was

strongly bound to the protein (Kd,10220M) [20]. In the present

study, EPR and X-ray absorption spectroscopy (XAS) were

performed in order to obtain information about the oxidation

state of the bound copper [37,38,39]. Taken together, the EPR

(Fig. 2) and the XANES results (Fig. 3) verified that the copper

bound in a high affinity mode is Cu(I) (Fig. S1), both when the

protein is in a soluble and full-length form (MopE*) as well as after

crystallization (MopE*246) (see Fig. 1).

In addition to the strong Cu(I) binding site, the EPR analyses

after addition of CuCl2 indicated that MopE* has two additional

Cu(II) binding sites (Fig. 2B and 4A–B). The X-band EPR

measurements gave information on the binding of these two

additional Cu(II) ions as well as on the geometry of the binding

sites.

Under the conditions used for the EPR titrations in this report it

is likely that the :’’free’’ Cu(II) ions will be in competition between

binding site(s) on the MopE* (EPR active) and the sparingly

soluble Cu (II) hydroxide (EPR silent), and it is thus difficult to

estimate an accurate dissociation constant for Cu binding to

MopE* based on the EPR data alone. However, the tabulated

solubility product data for Cu(II) hydroxide is approximately

10220, suggesting that the Cu(II) binding sites on MopE* must be

quite strong which is consistent with the equilibrium dialysis data

(discussed below). Since Cu(II) hydroxide only has limited

solubility the conditions used during the incubation time may

also affect the resultant spectra. However, similar Cu(II) binding

characteristics are observed in the equilibrium dialysis experiments

(discussed below) indicating that the EPR conditions used in this

report are adequate for studying Cu(II) binding to MopE*.

Figure 3. XAS analysis of MopE*. Normalised XANES of a) Cu(I) oxide (–), b) MopE* protein (–), and c) Cu(NH4)2(SO4)2?6H2O (Cu(II) tutton salt) (–).
doi:10.1371/journal.pone.0043146.g003
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Figure 4. Analysis of the twomajor EPR signals observed during titration of MopE* with CuCl2. (A) The solid line shows the EPR spectrum
of MopE* at 33 K with one molar equivalent of CuCl2 (identical to Fig. 2B, lane ii). The EPR parameters (gH, g||, A||) were read directly from the line
positions, and the inset shows the superhyperfine structure observed at 77 K with one molar equivalent of CuCl2. Dashed line: The spectrum was
simulated with the software SimFonia using Lorenzian/Gaussian ratio of 1, and line widths 6.8 mT, 7.2 mT and 5.2 mT with g = 2.197, 2.06 and 2.04,
A||Cu = 20 mT (B) The solid line corresponds to the difference spectrum obtained when MopE* with one molar equivalent of CuCl2 (Fig. 2B, lane ii )
was subtracted from MopE* with two molar equivalents of CuCl2 (Fig. 2B, lane iii). The EPR parameters (gH, g||, A||) were read directly from the line
positions, and the spectrum was simulated (dashed line) using Lorenzian/Gaussian ratio of 1, and line widths 7.2 mT, 7.2 mT and 8.2 mT with g = 2.27,
2.06 and 2.06, A||Cu = 16 mT.
doi:10.1371/journal.pone.0043146.g004
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The two different EPR species with ratio 1/1 per protein

molecule indicated two different mononuclear Cu(II)-sites. The

estimated g and A|| values for both Cu(II) species (Fig. 4) are

typical of so called non-blue type II Cu(II) centres (also called

normal Cu(II) complexes) [40,41,42,43,44,45,46]. Non-blue type

II Cu(II) centres have in general square planar geometry with

nitrogen and oxygen as coordinating ligands. This suggests that

Cu(II) does not bind to the same site as Cu(I), which has a trigonal

planar arrangement [20], and is also in line with the EPR analysis

of the protein in crystal form (MopE*246) which does not bind

Cu(II). The EPR signals and absence of strong blue light

absorption exclude Type I EPR active centre [37,47]. The first

binding of Cu(II) forms the species in Fig. 4A, which exhibits

relative low g|| value and high A|| value for Cu(II) in proteins.

Such EPR envelope (g|| = 2.196 and A|| = 20 mT) is quite unusual

and bears similarities with that observed in the (ethylenediamine)2-

Cu(II) and related complexes [44,45] while bovine serum albumin

Cu(II) at pH 9.2 has even larger A|| value and lower g|| value

[44]. The small distorted rhombic splitting along the gH value

from the purely axial case (g = 2.196, 2.06 and 2.06) to our

measured (g = 2.196, 2.06 and 2.04) in species presented in Fig. 4A

can be observed in other type II proteins, as for instance in the T2

centre of laccase [38]. The g|| and A|| parameters are in

agreement with ligations to 4N, 3N1O or 2N2O [43], and the

direct interaction with three or four different nitrogen nuclei is

supported by the observation of a resolved superhyperfine

structure in the gH region of the EPR spectrum after addition of

one equivalent of copper (Fig. 4 inset), similarly to what is found

for the mono-nuclear protein Cu(II) sites in e.g. particulate

methane monooxygenase [38,41]. After addition of two equiva-

lents of copper (Fig. 4B), the majority species g|| and A||

parameters are in agreement with ligations to 4N, 3N1O, 2N2O

and 1N3O [43] and it exhibits quite normal g|| and A|| values

(2.27 and 16 mT) for type II in proteins [37,41,48].

From our data, we cannot exclude the possibility that the

protein interacts at very low affinity with Cu(II) to make a complex

generating a third weak and broad EPR active Cu(II) signal,

observed after addition of 4 and 8 molar equivalents of CuCl2
(Fig. 4C).

Binding of Cu(II) to MopE* was also investigated by equilibrium

dialysis and IMAC binding. The equilibrium dialysis data were

consistent with Cu(II) binding to more than one site (Fig. 5 and

Figure 5. Binding of Cu2+ to MopE under equilibrium conditions. (A) MopE (10 mM, 500 ml) was dialysed overnight at 4uC against 100 ml of
20 mM Tris pH 7.5, 80 mM NaCl and 1 mM CaCl2 containing from 0 to 100 mM CuCl2. MopE bound Cu2+ was determined by ICP-MS (subtracting the
Cu(II) concentrations inside and outside the dialysis cassette). The molar ratio (r) of bound Cu(II) to MopE* has been plotted against the concentration
of CuCl2 in the dialysis buffer. The data were adjusted for copper bound to MopE* at no addition of CuCl2.
doi:10.1371/journal.pone.0043146.g005

Figure 6. Retention of MopE* on Cu(II) charged IMAC columns. 10% SDS-PA gels containing samples from Cu(II) affinity chromatography
columns; application at pH 6.8, elution performed with pH 4.0 Each eluted fraction (corresponding to one column volume = 0.5 ml) was analyzed The
lanes show the load to the column (Load), the flow-through (FT), the pH 6.8 washes (Wash), the pH 6.0 elutions (pH 6.0), the pH 4.0 elutions (pH 4.0),
and finally the EDTA-stripping of the column (50 mM EDTA). Application and washing was performed using 20 mM sodium phosphate buffer pH 6.8,
containing 0.5 M NaCl. Elution was performed using 20 mM sodium phosphate buffer containing 0.5 M NaCl and 1 mM CaCl2, pH 6.0 and 4.0,
respectively. The protein band indicated with an arrow represents MopE*224 (see Fig. 1).
doi:10.1371/journal.pone.0043146.g006
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S3). Estimation of the apparent binding constant to the strongest

site suggests a KD in the micromolar range, which is consistent

with the estimation from the EPR experiment (Fig. 2. insert), and

is similar to the Cu affinities observed for many copper chaperones

[49,50,51], and also that observed for methanobactin from M.

capsulatus [9]. However, the KD values reported for copper-protein

binding affinities for many systems are in general very variable.

The problem of scattered copper binding affinities reported for

metallo-chaperones like Atox1 has recently been addressed [52].

The use of a Tris buffer system in a copper-protein study has

a reducing effect on the binding affinity [53,54], since Tris is

a potential ligand for metal ions. The affinities for Cu(II) binding

to MopE* estimated in this report therefore represents minimal

values since the copper chelating effect of Tris should be

considered when calculating a ‘‘true’’ KD [53,55,56]. Overall,

our data indicates that at least binding of the first higher affinity

Cu(II) ion to MopE* may be of biological relevance.

It is interesting that MopE* in some respects can be compared

to copper chaperones, such as CopC, which binds one Cu(II) and

one Cu(I) on each side of the protein [57]. CopC is proposed to be

a periplasmic Cu chaperone involved in copper detoxification

[58], and it is tempting to speculate that a function of MopE is to

act as a copper chaperone on the cell surface.

IMAC binding studies (Fig. 6) revealed that MopE*, but not

MopE*224 could bind specifically to a Cu (II) charged column,

which strongly suggests that residues in the N terminal region of

MopE* are involved in coordinating the two Cu(II) ions. The N

terminal region of MopE* is not visible in the electron density

maps of the MopE* crystals, and may explain why additional

copper binding sites were not observed in the density maps when

MopE* was co-crystallised with excess CuSO4 [20]. The truncated

part of MopE* (missing in MopE*224) contains multiple aspartates

but no histidines: 205GLDTLDRDGDGSTADADCNDFAPT228.

Carboxylate moieties are known to participate in coordination of

Cu(II) ions in other proteins [59]. Coordination to cysteine is not

supported by the EPR results, and the histidine(s) possibly

involved, as indicated from the EPR data and from the binding

of MopE* to the Cu(II)-affinity column (Fig. 6), must therefore be

located elsewhere in the protein sequence. There are 7 histidine

residues in MopE* (His26, His132, His164, His203, His208,

His222 and His263), but analysis of the structure shows that only 4

of them His132, His203, His208 and His263 have a surface

exposed side chain. His132 and His203 are involved in co-

ordinating the Cu(I) ion and are probably not involved in Cu(II)

binding. His208 and His263 are located in relative close proximity

to the N-terminus in the MopE* crystal structure (Gly47) and

could possible be involved in coordinating Cu(II) along with other

residues in the flexible and disordered N-terminal region. His26 is

located in the flexible disordered N-terminal region of MopE* and

could also be involved in coordinating Cu(II). However, it is

possible that the NH2 terminus and/or deprotonated amides [60]

from the peptide backbone of MopE* are involved in coordinating

Cu(II), which would also be consistent with the superhyperfine

structure observed in the EPR spectrum of MopE* at 77 K with

one molar equivalent of CuCl2 (Fig. 4A inset). The identification of

the Cu(II) binding sites needs further investigations and should

preferably be performed on both MopE* and MopEc.

The X-ray diffraction and mass spectrometry data on MopE*

showed a unique kynurenine-containing copper-binding site [20].

The conversion of tryptophan to kynurenine takes place specifi-

cally in M. capsulatus and appears to be a prerequisite for Cu(I)-

binding in wild-type MopE, and is thus related to the biological

function of the protein [20]. A tryptophan residue in the vicinity of

a bound copper ion appears to affect their respective redox

properties [61]. Importantly, it would appear that the oxidation of

tryptophan is not coupled to the binding of Cu(I) since the

percentage of these Cu(I)-binding sites in MopE* actually contain-

ing Cu(I) depended largely on the copper content of the growth

medium, whereas the tryptophan in question was completely

oxidized in the crystal (20). Following purification, MopE* was

unable to further bind copper in a strong Cu(I) binding mode, i.e.

any additionally bound Cu is either not retained during

purification, or it is released during dialysis against copper free

buffers (this publication and ref 20). A possible explanation for this

may be that the binding of Cu(I) takes place when the protein is in

an partly unfolded form and/or when interacting with a partner

protein. Following (re)folding of the MopE* domain, the Cu(I)

binding site may be protected/shielded by the N-terminal 46

amino acids that are missing in the crystal form of the protein; this

flexible and ‘‘unstructured’’ sequence may form a lid over the

Cu(I) site barring further copper binding to this site. The loss of

such a lid function would explain why the occupancy of copper

increased from about 65 to near 100% when co-crystallizing (Cu-

MopE*) with CuSO4 (20), since in the crystal, the copper-binding

site is open to the solvent (20). The addition of copper to the

crystallization conditions had minor effects on the binding

distances (ref 20); in particular, the electron density was still

well-defined around the binding histidine imidazoles (His132 and

His203) and the oxidized Trp130, but less defined between the

copper atom and the water molecule. This may suggest that Cu(II)

could now be bound to unoccupied histidines (His132 and His203)

in the crystals of MopE* (See also reference 20 for further

discussion).

Whether or not MopE has a direct role in the reduction of the

copper ion found in the Cu(I) binding site remains to be

elucidated. It is interesting, however, to note that there is an

abundance of C-type cytochromes on the surface of M. capsulatus

[62,63], which, with the exception of the dissimilatory metal-

reducing bacteria, are not commonly observed in bacteria [64].

Several of these surface-exposed cytochromes showed a fine-tuned

copper-regulated expression between 0 to 1.6 mM copper in the

growth medium, i.e. in the concentration range where MopE is

expressed [2,16]. An inference is that the surface-located

cytochromes act as metal-reductases, perhaps converting cupric

to cuprous ions. Copper ions both in reduced and oxidized form

are imperative for the function of pMMO, the key metabolic

enzyme of the methanotrophs [5], and it is intriguing that MopE*

is being expressed just prior to the switch from a Cu-dependent

(pMMO) to a Cu-independent (sMMO) metabolism [65,66].

It would appear reasonable, in environments where copper

bioavailability is limited, that cells that are able to express a high

affinity uptake system have a competitive advantage over cells that

do not [1]. Methanobactin isolated from M. capsulatus has

substantially lower affinity for copper than methanobactin isolated

from M. trichosporium OB3B [9], having dissociation constants in

the order of 1025 to 1026 M and about 10216 M, respectively

[10,67]. Thus the affinity of Cu(II) to MopE* is of the same order

as the binding to M. capsulatus methanobactin, whereas the very

high Cu(I) affinity of MopE* is more in the order exhibited by the

M. trichosporium OB3B methanobactin. In this context, it is

important to note that the latter bacterium does not express

MopE. In line with their respective apparent binding constants, it

was observed that, when grown under copper limited conditions,

M. capsulatus methanobactin was isolated from the medium

without bound copper [13] whereas MopE* is isolated with

bound copper [20]. Taken together, the findings give support to

the hypothesis that MopE is acting as a species specific and

environment depending copper uptake system, presumably

MopE* Binds Both Reduced and Oxidized Copper
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utilizing both its high (Cu(I) and low Cu(II) affinity properties. In

particular, MopE* may possibly act as a copper chaperone that

delivers both Cu(I) and Cu(II) to other proteins under Cu limiting

conditions.

Supporting Information

Figure S1 Illustration of the binding site for reduced
copper in MopE*. Cu(I) is coordinated by His132, His203,

Kynurenine130 and a solvent molecule in a tetragonal arrange-

ment. The geometry and distances (in Angstrom) is obtained from

PDB entry 2VOV.

(TIF)

Figure S2 Analysis of the weak third EPR signal
observed after addition of 4 and 8 molar equivalents of
CuCl2 to MopE*. The solid line corresponds to the difference

spectrum obtained when MopE* with 8 molar equivalents of

CuCl2 (Fig. 2B, lane v) was substracted from MopE* with 4 molar

equivalents of CuCl2 (Fig. 2B, lane iv). The spectrum was

simulated (dashed line) using Lorenzian/Gaussian ratio of 1, and

line widths 5.0 mT, 6.5 mT and 5.0 mT with g = 2.305, 2.060

and 2.064, A||Cu = 15.8 mT.

(TIF)

Figure S3 Scatchard plot analysis of the equilibrium
dialysis data. The dissociation constants (KD) were determined

from the reciprocal of the linear slopes (dashed lines). r is to the

molar ratio of bound Cu(II) to MopE*. The analyses indicate two

distinct affinities for Cu(II).

(TIF)
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