3,697 research outputs found

    Renormalized field theory of collapsing directed randomly branched polymers

    Get PDF
    We present a dynamical field theory for directed randomly branched polymers and in particular their collapse transition. We develop a phenomenological model in the form of a stochastic response functional that allows us to address several interesting problems such as the scaling behavior of the swollen phase and the collapse transition. For the swollen phase, we find that by choosing model parameters appropriately, our stochastic functional reduces to the one describing the relaxation dynamics near the Yang-Lee singularity edge. This corroborates that the scaling behavior of swollen branched polymers is governed by the Yang-Lee universality class as has been known for a long time. The main focus of our paper lies on the collapse transition of directed branched polymers. We show to arbitrary order in renormalized perturbation theory with Δ\varepsilon-expansion that this transition belongs to the same universality class as directed percolation.Comment: 18 pages, 7 figure

    Comparison Between the Ultraviolet Emission From Pulsed Microhollow Cathode Discharges in Xenon and Argon

    Get PDF
    We measured the dynamic I–V characteristics and vacuum ultraviolet (VUV) emission lines of the second continuum in xenon (170 nm) and argon (130.5 nm) from pulsed microhollow cathode discharges (MHCD). For pulse lengths between 1 and 100 ÎŒs the dynamic I–V characteristics are similar in both inert gases. Only the time variation of the VUV emission line at 170 nm for xenon can be related to the dimer excited states. In argon the energy transfer between the Ar*2 dimers and the oxygen impurity atoms is responsible for a qualitatively different time behavior of the resonance line at 130.5 nm. Consequently, the relative VUV efficiency reveals an inverse dependence on the electrical pulse lengths for the MHCD in xenon and argon, respectively

    First Detection of HCO+ Emission at High Redshift

    Get PDF
    We report the detection of HCO+(1-0) emission towards the Cloverleaf quasar (z=2.56) through observations with the Very Large Array. This is the first detection of ionized molecular gas emission at high redshift (z>2). HCO+ emission is a star formation indicator similar to HCN, tracing dense molecular hydrogen gas (n(H_2) ~= 10^5 cm^{-3}) within star-forming molecular clouds. We derive a lensing-corrected HCO+ line luminosity of L'(HCO+) = 3.5 x 10^9 K km/s pc^2. Combining our new results with CO and HCN measurements from the literature, we find a HCO+/CO luminosity ratio of 0.08 and a HCO+/HCN luminosity ratio of 0.8. These ratios fall within the scatter of the same relationships found for low-z star-forming galaxies. However, a HCO+/HCN luminosity ratio close to unity would not be expected for the Cloverleaf if the recently suggested relation between this ratio and the far-infrared luminosity were to hold. We conclude that a ratio between HCO+ and HCN luminosity close to 1 is likely due to the fact that the emission from both lines is optically thick and thermalized and emerges from dense regions of similar volumes. The CO, HCN and HCO+ luminosities suggest that the Cloverleaf is a composite AGN--starburst system, in agreement with the previous finding that about 20% of the total infrared luminosity in this system results from dust heated by star formation rather than heating by the AGN. We conclude that HCO+ is potentially a good tracer for dense molecular gas at high redshift.Comment: 5 pages, 3 figures, ApJL, in press (accepted May 17, 2006

    Political conservatism predicts asymmetries in emotional scene memory

    Get PDF
    Variation in political ideology has been linked to differences in attention to and processing of emotional stimuli, with stronger responses to negative versus positive stimuli (negativity bias) the more politically conservative one is. As memory is enhanced by attention, such findings predict that memory for negative versus positive stimuli should similarly be enhanced the more conservative one is. The present study tests this prediction by having participants study 120 positive, negative, and neutral scenes in preparation for a subsequent memory test. On the memory test, the same 120 scenes were presented along with 120 new scenes and participants were to respond whether a scene was old or new. Results on the memory test showed that negative scenes were more likely to be remembered than positive scenes, though, this was true only for political conservatives. That is, a larger negativity bias was found the more conservative one was. The effect was sizeable, explaining 45% of the variance across subjects in the effect of emotion. These findings demonstrate that the relationship between political ideology and asymmetries in emotion processing extend to memory and, furthermore, suggest that exploring the extent to which subject variation in interactions among emotion, attention, and memory is predicted by conservatism may provide new insights into theories of political ideology

    The Relationship Between Molecular Gas, HI, and Star Formation in the Low-Mass, Low-Metallicity Magellanic Clouds

    Get PDF
    The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H2_{2}. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metallicity-dependent star formation models of Ostriker, McKee, and Leroy (2010) and Krumholz (2013) to our observations and find that they both predict the trend in the data, suggesting that the inclusion of a diffuse neutral medium is important at lower metallicity.Comment: 24 pages, 14 figures, accepted for publication in ApJ. FITS files of the dust-based estimates of the H2 column densities for the LMC and SMC (shown in Figures 2 and 3) will be available online through Ap

    Total Synthesis, Structure, and Biological Activity of Adenosylrhodibalamin, the Non-Natural Rhodium Homologue of Coenzyme B12.

    Get PDF
    B12 is unique among the vitamins as it is biosynthesized only by certain prokaryotes. The complexity of its synthesis relates to its distinctive cobalt corrin structure, which is essential for B12 biochemistry and renders coenzyme B12 (AdoCbl) so intriguingly suitable for enzymatic radical reactions. However, why is cobalt so fit for its role in B12‐dependent enzymes? To address this question, we considered the substitution of cobalt in AdoCbl with rhodium to generate the rhodium analogue 5â€Č‐deoxy‐5â€Č‐adenosylrhodibalamin (AdoRbl). AdoRbl was prepared by de novo total synthesis involving both biological and chemical steps. AdoRbl was found to be inactive in vivo in microbial bioassays for methionine synthase and acted as an in vitro inhibitor of an AdoCbl‐dependent diol dehydratase. Solution NMR studies of AdoRbl revealed a structure similar to that of AdoCbl. However, the crystal structure of AdoRbl revealed a conspicuously better fit of the corrin ligand for RhIII than for CoIII, challenging the current views concerning the evolution of corrins

    Acoustoelectric effects in quantum constrictions

    Full text link
    A dc current induced in a quantum constriction by a traveling acoustic wave (or by non-equilibrium ballistic phonons) is considered. We show that in many important situations the effect is originated from acoustically-induced scattering between the propagating and reflecting states in the constriction. Two particular regimes corresponding to relatively high and low acoustic frequencies are discussed. In the first regime, the acoustoelectric effect in a smooth constriction can be understood by semi-classical considerations based on local conservation laws. For the low frequency regime, we show that the acousto-conductance is closely related to the zero field conductance. The qualitative considerations are confirmed by numerical calculations both for smooth and abrupt channels.Comment: 10 pages, RevTeX, 9 postscript figures, submitted to Phys. Rev.

    Beef production from feedstuffs conserved using new technologies to reduce negative environmental impacts

    Get PDF
    End of project reportMost (ca. 86%) Irish farms make some silage. Besides directly providing feed for livestock, the provision of grass silage within integrated grassland systems makes an important positive contribution to effective grazing management and improved forage utilisation by grazing animals, and to effective feed budgeting by farmers. It can also contribute to maintaining the content of desirable species in pastures, and to livestock not succumbing to parasites at sensitive times of the year. Furthermore, the optimal recycling of nutrients collected from housed livestock can often be best achieved by spreading the manures on the land used for producing the conserved feed. On most Irish farms, grass silage will remain the main conserved forage for feeding to livestock during winter for the foreseeable future. However, on some farms high yields of whole-crop (i.e. grain + straw) cereals such as wheat, barley and triticale, and of forage maize, will be an alternative option provided that losses during harvesting, storage and feedout are minimised and that input costs are restrained. These alternative forages have the potential to reliably support high levels of animal performance while avoiding the production of effluent. Their production and use however will need to advantageously integrate into ruminant production systems. A range of technologies can be employed for crop production and conservation, and for beef production, and the optimal options need to be identified. Beef cattle being finished indoors are offered concentrate feedstuffs at rates that range from modest inputs through to ad libitum access. Such concentrates frequently contain high levels of cereals such as barley or wheat. These cereals are generally between 14% to 18% moisture content and tend to be rolled shortly before being included in coarse rations or are more finely processed prior to pelleting. Farmers thinking of using ‘high-moisture grain’ techniques for preserving and processing cereal grains destined for feeding to beef cattle need to know how the yield, conservation efficiency and feeding value of such grains compares with grains conserved using more conventional techniques. European Union policy strongly encourages a sustainable and multifunctional agriculture. Therefore, in addition to providing European consumers with quality food produced within approved systems, agriculture must also contribute positively to the conservation of natural resources and the upkeep of the rural landscape. Plastics are widely used in agriculture and their post-use fate on farms must not harm the environment - they must be managed to support the enduring sustainability of farming systems. There is an absence of information on the efficacy of some new options for covering and sealing silage with plastic sheeting and tyres, and an absence of an inventory of the use, re-use and post-use fate of plastic film on farms. Irish cattle farmers operate a large number of beef production systems, half of which use dairy bred calves. In the current, continuously changing production and market conditions, new beef systems must be considered. A computer package is required that will allow the rapid, repeatable simulation and assessment of alternate beef production systems using appropriate, standardised procedures. There is thus a need to construct, evaluate and utilise computer models of components of beef production systems and to develop mathematical relationships to link system components into a network that would support their integration into an optimal system model. This will provide a framework to integrate physical and financial on-farm conditions with models for estimating feed supply and animal growth patterns. Cash flow and profit/loss results will be developed. This will help identify optimal systems, indicate the cause of failure of imperfect systems and identify areas where applied research data are currently lacking, or more basic research is required

    Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. II. Gas-to-Dust Ratio Variations across ISM Phases

    Get PDF
    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Halpha observations. In the diffuse atomic ISM, we derive the gas-to-dust ratio as the slope of the dust-gas relation and find gas-to-dust ratios of 380+250-130 in the LMC, and 1200+1600-420 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 Mo pc-2 in the LMC and 0.03 Mo pc-2 in the SMC, corresponding to AV ~ 0.4 and 0.2, respectively. We investigate the range of CO-to-H2 conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on XCO to be 6x1020 cm-2 K-1 km-1 s in the LMC (Z=0.5Zo) at 15 pc resolution, and 4x 1021 cm-2 K-1 km-1 s in the SMC (Z=0.2Zo) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ~2, even after accounting for the effects of CO-dark H2 in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H2. Within the expected 5--20 times Galactic XCO range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H2
    • 

    corecore